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ABSTRACT 
 

This dissertation proposes a principle of “economy of command”, arguing that it provides 
a simple and natural explanation for some well-known properties of human language 
syntax. The focus is on the abstract combinatorial system that constructs the hierarchical 
structure of linguistic expressions, with long-distance dependencies determined by the 
structural relation of c-command. Adopting the assumption of much recent work that 
properties of syntax reflect very general organizational principles, I propose that syntactic 
forms with fewer and shorter c-command relations are preferred.  Within the boundaries 
of strict binary branching assumed here, this results in a preference for hierarchical tree 
structures to be shallow and bushy, rather than deep and narrow. I pursue two broad 
applications of this principle, to syntactic movement and phrase structure.   
 I argue that movement, the displacement of material to thematically unrelated 
positions, is a mechanism to reduce the number and length of c-command relations in the 
affected structures. I detail the properties we expect if movement is driven by this 
principle, including antilocality, a size threshold effect, a class of island effects, and 
feedback effects on iterated patterns of movement. I argue that these predictions align 
well with recent empirical descriptions of syntactic movement. I develop an account in 
these terms of the cross-linguistic ordering of elements within nominal phrases. Utilizing 
a computer program, I show that a single underlying structure common to all languages 
can give rise to all and only the attested word order possibilities via c-command-reducing 
movements, and describe the required shape of this underlying structure. 
 The principle of economy of command also makes predictions about the format of 
phrase structure. Among the possible ways to build self-similar syntactic structure, the 
phrasal forms that build trees with the fewest c-command relations are “endocentric”, in 
the geometric sense that each phrase contains a unique local terminal, and every daughter 
of the phrase that does not contain its associated terminal is another phrase.  This 
provides a structural basis for the mysterious headedness of phrases. These successes 
support the validity of the principle, and reinforce the broader project of seeking 
naturalistic explanation of linguistic properties. 
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CHAPTER 1: 
INTRODUCTION 

 

1.0 Biolinguistics and the Minimalist program 

This dissertation aims to contribute to the emerging field of biolinguistics, approaching 

linguistics as a natural science. I argue that some fundamental properties of syntax (the 

rules governing how words are assembled into phrases and sentences) can be explained 

by natural laws of form, principles of efficient computation, and the like, matters of 

‘Galilean perfection’ that are most obvious in the inorganic world (e.g., in the six-pointed 

stars of snowflakes). The concerns pursued below can be viewed as a species of ‘Save 

Wire’ constraint1, applied to abstract long-distance (c-command and dominance) relations 

in syntactic structures. The results calls to mind the stunning findings of Cherniak et al 

(2004), who reports human cerebral cortex to be optimized for a far more literal version 

of ‘Save Wire’ (a one in many billions best solution). It is worth asking whether similar, 

very general, principles of network optimization are at work both in the neural 

architecture, and in the mathematical laws of linguistic cognition. 

  It is increasingly clear that natural law in this sense plays a significant role in 

explaining organic forms, as argued by D’Arcy Wentworth Thompson (1917) and Turing 

(1952), an idea lately revived in the ‘evo-devo’ revolution in biology (see e.g. Carroll 

2005).  This work goes one step further, and argues that natural law is evident in 

cognition as well (as manifested in human language). The picture that emerges casts the 

syntactic system (part of the mind) as something like a crystal (Chomsky 2005), robustly 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 That is, an optimization constraint that minimizes the number and cost of connections in a complex 
system. 
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and spontaneously patterned by neither elaborate genetic specification nor environmental 

shaping, but rather by organizational principles of nature itself (Chomsky’s “third 

factor”). See Boeckx and Piatelli-Palmarini (2005), Freidin & Vergnaud (2001), 

Uriagereka (1998), among many others. 

  The third factor consists of “principles not specific to the faculty of language” 

(Chomsky 2005: 6); these are contrasted with the first factor (genetic) and the second 

(environment and learning). The third factor instead comprises “principles of structural 

architecture and developmental constraints that enter into canalization, organic form, and 

action over a wide range, including principles of efficient computation, which would be 

expected to be of particular significance for computational systems such as language” 

(Chomsky 2005:6). 

  The more we are able to show that deep and very general principles determine the 

details of the phenomenon, the more we have explained in a principled way. In the case 

of language, there are particularly strong reasons to suspect that laws of form in some 

sense (Cherniak’s “non-genomic nativism”) play a large role in comparison to other 

factors, especially the first factor (genetic endowment). This suspicion is due to the 

apparent recent emergence and near-uniformity of the faculty of language across the 

species, even between groups who diverged tens of thousands of years ago.2  Moreover, 

if we prematurely retreat to explanations in terms of the other two factors, we may end up 

dismissing as noise or brute accident what may in fact be signs of deep order. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 We must, it seems, now admit some genuine variation, though of a quite peripheral sort, in view of the 
recent discovery of a genetic component to the distribution of tone languages (Dediu & Ladd 2007). Note 
that, of the dozens of linguistic features the authors examined, only tone had a significant correlation with 
the distribution of the (brain growth and development related) alleles they implicated (ASPM-D and 
MCPH-D).  
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  The present work can be seen as part of the project that Chomsky (2007) describes 

as “approaching UG [universal grammar] from below,” the idea being to see how close 

we can get to correctly describing the faculty of language while attributing as spare, and 

as conceptually natural, a structure to that faculty as conceivable. The effort may succeed 

or fail, but surely it is worth attempting. This thesis argues that an understanding of how 

long-distance dependencies accumulate in syntactic representations, and the natural 

supposition that computation should seek to minimize the burden of long-distance 

computations, leads to rich and surprisingly correct predictions about the facts of natural 

language. In this case, I argue that X-bar-like phrase-structural patterns provide the 

optimal “growth mode” for minimizing the overall number of long-distance relations, 

while the movements found in natural language uniformly “improve” (reduce the number 

of long-distance relations in) the structures they transform.  

 

1.1  An old idea 

In many ways, the ideas of this thesis represent a return to some older ideas, explored in 

the earliest days of Generative Grammar. While much current research focuses on the 

attempt to understand syntactic phenomena in terms of the specific properties (features) 

of the items involved, the present work follows an old tradition of looking to the 

structural forms themselves, independent of their contents. The suspicion is that recent 

work may be missing the trees for the leaves, so to speak: by pursuing the idea that the 

features of individual syntactic objects determine their syntactic behavior, one misses the 

possibility that what is driving syntactic phenomena are properties of the trees 
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themselves. In this work, I argue that concerns of bare tree form (namely, minimization 

of long-distance dependencies) suffice to explain many of the core properties of human 

syntax. Below, I discuss two previous works that have pursued similar ideas.3 

 

1.1.1  Transformations as structural simplification 

 “A major concern of the minimalist program is the reduction of the 
computational load in carrying out a derivation. A natural extension of that 
concern is the reduction of the complexity of the generated objects 
themselves, such as their degree of embedding, without sacrificing 
expressive power. Syntactic transformations, as they were first formulated 
in generative grammar, to some extent had the property of reducing the 
structural complexity of the generated objects.” (Langendoen 2003: 307).  

 
As Chomsky & Miller (1963: 304) observe, “Singulary transformations are often just 

permutations of terms in the proper analysis. […] Figure 6 illustrates a characteristic 

effect of permutations, namely, that they tend to reduce the amount of structure to which 

they apply.”  Their example is turn out some of the lights / turn some of the lights out, 

where the transformation is taken to exchange the second and third terms of (V, Prt, NP). 

I reproduce their structures below: 

(1) a.  VP          b. VP 

 Verb      NP    Verb    NP   Prt 

 V   Prt  Determ   N    V   Determ  N  out 

turn out Quant Art lights  turn Quant Art lights 

     some  of the       some  of the      (Chomsky & Miller 1963: 305) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Certainly Kayne (1994) deserves mention in this regard, as a modern work which points to explanations 
for syntactic facts in terms of properties of tree structure (and, moreover, in terms of the c-command 
relations defined over those trees). In this section, I keep to discussion of older work; Kayne’s proposals 
will be touched on throughout this thesis, in various ways. 
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This “permutation” transforms a strictly binary-branching structure with the Prt and V 

grouped together, into one with a unary-branching constituent dominating the verb and a 

ternary-branching VP at the highest level – this difference constituting the reduction in 

structure they have in mind.4   

  In what follows, I pursue somewhat similar ideas. The idea that transformations 

reduce the degree of embedding, in particular (see the quote from Langendoen above), is 

at the heart of Chapters 4 and 5 below. Nevertheless, the implementation of that intuition 

here is rather different; for instance, I keep to strict binary-branching throughout (see 

Kayne 1984). The relevant notion of structural minimization is constructed in terms of 

long-distance dependencies; put another way, it is about minimizing the depth of 

syntactic structures. This notion, too, finds a precedent in older proposals. 

 

1.1.2  Minimal depth as a desideratum 

The present work finds an important predecessor in Yngve (1960).5 To a certain extent, 

the concerns to be pursued in this work echo his, in particular the following points: 

(i) An attempt to explain “non-functional complexity” (ibid., 452) in terms of 

easing a computational burden associated with language. 

(ii) A preference for one extreme of branching structure over the opposite 

extreme. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4 It is not clear what this is taken to be a reduction of: perhaps branching structure in some sense, but note 
the total number of branches and nodes is unchanged. What is in fact reduced is the total number of certain 
long-distance dependencies.  
5  Thanks to Norbert Hornstein for discussion. 
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(iii)  A concern to minimize depth (for Yngve, depth is the amount of temporary 

memory storage needed by his language production device): “depth 

considerations are among the most important factors in the grammar of any 

language.” (ibid., 452) 

(iv) The expectation that a limit on depth will be reflected in grammatical 

conditions, (“We would expect that constructions of less depth would be 

preferred over equivalent constructions of greater depth.” (ibid., 453)), 

with readily observable results; “The grammars of all languages will 

include methods for restricting regressive6 structures so that most 

sentences will not exceed this depth,”(ibid., 452) 

Yngve’s work, while solidly grounded in the concerns of computationally implementing 

a grammar, has not had much impact on current syntactic theory. This relates to the 

mechanism he proposes to limit the penalized (regressive, or left-branching) structures 

involves counting in a ‘restricted relabeling’ system:  

 “A regressive branch can be allowed to grow for a certain length and then 
stopped if some method is used for automatically counting or keeping track 
of the number of regressive steps so that the nth step can be prevented.” 
(Yngve 1960: 453)  
 

It is this move that Miller and Chomsky (1963) famously object to, concluding that, to 

put it as simply as possible, grammars can’t count.7  Rather, Miller and Chomsky argue 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Yngve distinguishes regressive from progressive branches: the latter are the rightmost branch of any 
phrasal expansion, while the former are non-rightmost branches. In his system, regressive structures require 
increasing memory resources, while progressive structures do not. The production system he details can 
“forget” information associated with the embedding context (only) when expanding a right branch. 
7 This conclusion might be rethought in light of the unification of the arithmetic ability and the faculty of 
language suggested by Hauser, Chomsky, and Fitch (2002). They suggest that a single fundamental 
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that memory resources constrain only performance, and are not directly reflected in 

grammatical conditions, as Yngve had envisioned. On their view, there are fully 

grammatical expressions that happen to be unusable for non-grammatical reasons (for 

example, multiply center-embedded sentences). 

  While Yngve examines a range of interesting data that supports his basic “save the 

hardest for last” prediction (a preference for branching complexity to be limited, as much 

as possible, to the rightmost branch of a growing production tree), the kinds of 

“discontinuous constituents” he motivates do not form a grammatically central body of 

phenomena. That is, the relevant movements are, we would now say, rightward 

movements. If the phenomena Yngve investigates are indeed movement patterns, they 

have a ‘peripheral’ feel, quite opposite to the large core of leftward syntactic movement 

phenomena (see Kayne 1994). As a particularly striking, and I think significant, example 

of the different predictions of Yngve (1960) and the present account, consider what has 

become known as the “copy theory” of movement (see Chomsky 1995b, Nunes 1995, 

Bošković 2001, among others). Leaving details for later, the idea is that syntactic 

movement creates a chain of identical objects, only one of which, typically the highest, 

furthest left copy in the chain, is pronounced. Insofar as overt copies are more costly than 

covert copies (for pronunciation and linearization, almost trivially so), then Yngve’s 

proposal would seem to predict the opposite preference, as part of the general theme of 

“save the hardest for last”. Instead, in natural language, the hardest (the pronounced copy 

in the chain) comes first, not last. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
innovation in combinatoric cognition, called Merge, was the evolutionary event that gave our species both 
abilities. If so, there is a sense in which grammar and counting are, in effect, the same thing. 
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  The central thesis of the present work, that language design should reflect what I 

call “economy of command” (in effect, tree-balancing/sum-over-depths minimization) is 

tantalizingly close in spirit to Yngve’s concern for minimizing depth of temporary 

memory in a sentence-production device. Yet the detailed predictions work out quite 

differently. In the present work, the central concern is also, as for Yngve (1960), 

minimization of depth, though measured in a different sense. I will also claim that a 

number of aspects of the structure of natural language expressions can be fruitfully 

analyzed as methods to reduce or minimize depth (in my sense). However, rather than 

temporary memory, the relevant notion of depth is constructed in terms of the relation of 

c-command. 

(2) C-Command: Node A c-commands node B if neither A nor B dominates the other 

and the first branching node which dominates A dominates B. (Reinhart 1976: 32) 

C-command (Reinhart 1976), the syntactic relation taken to play a role in many syntactic 

phenomena (including binding, agreement, movement, scope, linearization, probe-goal, 

etc.) has survived a number of radical overhauls of syntactic theory. As Epstein et al 

(1998: 24) point out, “…[C-command] is persistent: despite substantive changes in the 

theory of syntax, Reinhart’s definition, proposed almost two decades ago, remains 

linguistically significant.”8   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 While ‘eliminating’ c-command is a much-practiced sport of late, I think such attempts fare no better than 
attempts to ‘eliminate’ specifiers (e.g., Starke 2004). While such attempts may achieve a recasting or 
reanalysis of the relevant relation or structure, there is a core of truth about the traditional formulation that 
survives intact. Consider Epstein et al (1998)’s derivational account of c-command. Rather than being an 
arbitrarily defined representational constraint on the domain of syntactic relations, as in Government & 
Binding Theory (Chomsky 1981), c-command is seen to be a natural “dynamic horizon”; relations can only 
be established between subtrees linked by Merge, the structure-building operation. That gives us a good 
answer to why the particular structural relation described by c-command should be the correct description. 
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1.2 Tree-balancing as a desideratum for language design 

This work claims that certain facts of natural language can be explained naturalistically in 

terms of “economy of command”, in effect an extension of basic minimal search 

concerns to minimizing the aggregate load of iterated c-command-based computations. It 

amounts to a preference for balanced trees, because shallow, bushy structures have fewer 

total c-command relations than deep, spindly ones. I take this difference to index a lesser 

load for the computation of long-distance dependencies (empirically irreducible and 

numerous). There are clear reasons to expect those shapes with fewer vertical relations to 

be favored: they put a tighter cap on the ‘explosion’ of long-distance relations.  

 

1.3 Predictions for the structure of natural language 

I argue that tree-balancing explains a number of fundamental—and otherwise deeply 

mysterious—properties of human language. Chief among these are (i) projection/labeling 

and (ii) syntactic movement. I argue that (i) projection is an epiphenomenon of optimal 

branching in (the dynamic growth of) truly bare phrase structures, and (ii) syntactic 

movement can be explained, in a deep sense, in the same terms. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
In a sense, it eliminates c-command as a primitive syntactic notion; instead, the relevant notion is derived 
from a derivational understanding of syntax. But what has not “dissolved” is the concept of a search 
process accompanying Merge, establishing linguistically significant intra-arboreal relations. On this view, 
minimization of c-command should matter for computational reasons, as it reduces the length of the search 
implicit in the derivational definition. That is, relations are established not just between two objects linked 
by Merge, but between one object and the contents of the other object. Seen this way, the concern of this 
thesis, economy of command, comes into focus as a condition of minimal search.  In structures with fewer 
c-command relations, the relevant intra-arboreal searches are fewer and shorter.   
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  As for projection (i), I prove that unlabeled geometric forms isomorphic to 

generalized X-bar phrases (one terminal “head”, one “complement” phrase, some fixed 

number of “specifier” phrases) are optimal, building more balanced trees than any 

alternative phrasal shapes of matched complexity. In effect, endocentricity ‘emerges’ as 

an accident of optimal tree growth; then projection, a stipulation in most current theories, 

dissolves into more basic machinery, a welcome result for the Minimalist Program 

(Chomsky 1995b). 

  Not only does tree-balancing provide a compelling motivation for movement (ii), to 

balance unbalanced trees, but indeed the detailed phenomenology of movement might fall 

out from these concerns as well. Supposing that movement is ‘for’ tree-balancing, we 

predict the following: Anti-locality; phrasal but not head movement; the possibility of 

roll-up (runaway minimally-antilocal) movement; and, incorporating a notion of syntactic 

cycle, we predict movement of large XPs to the edge, or just below the edge, of the cyclic 

domain—as I argue, this provides a structural basis for A-bar and A-movement, 

respectively. 

  Moving beyond broad-stroke predictions, I demonstrate at length that the cross-

linguistic array of attested and unattested relative orders of demonstrative, numeral, 

adjective, and noun (cf. Greenberg’s 1963 Universal 20) can be made to follow from 

constraining movement to improve tree-balance, if the large cartographic hierarchy 

underlying the coarse four-element hierarchy meets geometric constraints I derive. The 

predicted tree-shape actually aligns closely with current cartographic proposals for the 
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nominal domain (Cinque 2005, Svenonius 2008), with further strong predictions, e.g. a 

large size for the subtree underlying the noun. 

 

1.4 Brief note on perspective and goals 

The approach taken throughout departs from the large empirically-motivated body of 

work that seeks to derive conditions on syntactic form from semantic or lexical 

characteristics of the expression. Instead, I limit my focus here to considerations of bare 

branching form, as a matter of idealization in the Minimalist mode. Simply put, my goal 

is to try to figure out how a minimal language device designed for economy of command 

would be expected to behave. This should not be read as a serious proposal that this is the 

only factor at work in determining the properties of natural language expressions. But the 

only way to find out how much can be explained in this way, is to start by pretending as 

if it were the only factor, to understand what design features would affirm the presence of 

the hypothesized bias. 

  Can we ‘grow’ the essential outlines of the properties of human syntax from some 

austere (computational) ‘physics’ of language?  How much can we explain about the 

syntax of particular expressions, in particular languages, in terms that make no reference 

whatsoever to the lexical contents thereof, but rather is cast wholly in terms of laws of 

(tree) form?  Surely not everything; of course the relevant phenomenon is nuanced, 

influenced by many ‘messy’ factors, and enormously complicated. But I submit that the 

answer is not ‘nothing’, either; the notion of economy of command, applied as I sketch in 

the rest of the dissertation, seems to buy us something like what we find in natural 



	
  

	
  

23	
  

language. This dissertation is an attempt to take this perspective seriously, and see how 

far it might go. 

  To take a concrete example, in what follows I ignore completely the rich and quite 

productive body of work exploring the role of syntactic features in determining the 

details of syntactic movement. Instead, I pursue explanations for movement in a blindly 

structural sense, where the individual nodes of the tree are taken to be featureless and 

indistinguishable. This should not be taken to indicate that I think we can ultimately 

discard features from syntactic explanations.  

  Nevertheless, there is something unsatisfying about ascribing each movement to an 

appropriately placed feature, especially where independent semantic or morphological 

evidence for that feature is thin on the ground (a familiar complaint). The goal of the 

present work is to go beyond taxonomy, to a place where, even if we must admit features 

as part of the mechanism of movement (the proximate cause), we can say something 

insightful about why features are such as to drive the movements they do. This echoes the 

conclusions of Boeckx: 

 “[…] the neo-constructionist, realizational, post-syntactic PF-models that 
are becoming more and more influential should be used to view lexical 
features not as leaders, but as followers, as stabilizing, rather than dictating 
the construction of structural options.” (Boeckx 2010: 22) 

 

1.5  Structure of this dissertation. 

The remaining chapters are devoted to developing the notion of “economy of command”, 

working out the predictions that follow it, and comparing them against what is known 

about human language. I take the results to be broadly encouraging; it appears as though 
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a great deal of the basic machinery of the language faculty can be rationalized in the 

present terms, perhaps (eventually) explained in a deep sense. Nevertheless, this is 

nothing more than an initial exploration of the terrain, and a great deal more work would 

be required to see how far this sort of thing can really go. 

  Chapter 2 lays out the basics of the idea. I enumerate some reasons for thinking that 

the number of c-command (equivalently, dominance) relations in a tree represents a kind 

of computational cost. The idea is that a large number of linguistic phenomena track 

along long-distance dependency paths described by these relations, and that the ‘search’ 

process involved in computing long-distance dependencies is costly, such that minimal 

search is preferred. I provide a simple exploration of some of the relevant mathematics, 

examining how the number of c-command (or, if we like, dominance) relations scales 

with tree size and changes with tree shape, whether it is reasonable to count all c-

command relations equally (and some gesturing at what predictions we would get if we 

pursued some other reasonable alternatives), and further details. 

  Chapter 3 spells out the theoretical assumptions that underpin this work.  There are 

two broad topics in this chapter.  The first concerns the approach to comparative syntax 

lately called “cartography,” which supposes that syntactic structures are much more 

finely articulated than traditionally assumed, and that the articulated structure is largely 

or completely identical for all expressions, and all languages.  A particularly important 

issue here is whether there is any degree of variation at all, and if so how constrained it 

might be; these concerns return to the forefront in the following chapter.  Also with an 

eye to setting the scene for the rest of this investigation, this chapter takes up the notion 
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of what I call cyclic interpretation.  The basic thrust is that much of the “action” with 

respect to the c-command and dominance relations happens in the partial representations 

presented by the syntactic engine to the interfaces, phase by phase.  To put it simply, this 

means that what matters is economy of command as it exists in interface forms, which 

reflect the results of movement, and where the chain of copies produced by movement 

collapses onto a single position (for most, but not all processes that rely on hierarchical 

relations, only the highest copy in the chain “counts”). This perspective combines two 

core ideas of Chomsky’s 1995b Minimalist Program: a concern for economy conditions, 

and attention to requirements imposed on syntax by the interfaces (so-called bare output 

conditions). 

  Chapter 4 takes up the task of treating syntactic movement as a mechanism for tree-

balancing. I discuss the motivations for this view of things, and propose a precise 

condition governing movement, the Fundamental Movement Condition (FMC). I then 

move to exploring further aspects of my predictions, with an eye to well-known, often 

mysterious properties of movement phenomena that bear on these predictions. I motivate 

a notion of Antilocality (a hard lower limit on how short movement can be), and what I 

call a size threshold effect, which I relate to several empirical phenomena. I point out that 

this view of movement also gives us a natural kind of island condition, from which we 

may derive a form of Ross’s (1967) Coordinate Structure Constraint.  I consider the 

patterns of movement expected under this account, including an analogue of extremely-

local roll-up movement. 
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  Chapter 5 provides an existence proof that this account of movement can get us 

somewhere interesting. In particular, the goal we reach is a sufficient account of the 

typology of possible and impossible DP orders of the four core elements (demonstrative, 

numeral, adjective, and noun). As I show, there are shapes of the base tree such that all 

and only the attested orders have a “positive” derivation, while no unattested orders do 

(“positive derivation”: one in which the only movements that occur each satisfy the FMC, 

i.e. achieve better tree-balance). Thus, if the base tree in fact matches my structural 

predictions, the account looks eminently plausible. I discuss some recent proposals in the 

cartographic literature that seem to support my predictions, which I take to be most 

intriguing and encouraging, not least because the predictions are quite specific and 

restrictive – i.e., they are unlikely to be satisfied “by accident”; we wouldn’t expect the 

base tree to happen to meet these incredibly detailed predictions if the present account 

were completely off-base.  

  In chapter 6, (a reworked version of portions of Medeiros 2008), I apply economy 

of command as a metric to select among implicitly unconstrained phrase structure 

patterns, supposing that those phrasal ‘recipes’ that produce the most balanced trees are 

favored. As I show, requiring nothing more than that phrase structure must accomplish 

the linkage of terminal atoms with larger, recursively defined structures, economy of 

command picks out as ‘best’ (relative to patterns of matched complexity) those patterns 

corresponding to a generalized X-bar schema. In effect, this yields endocentricity as a by-

product of optimal packing, a happy result. 
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  Chapter 7 expands considerably on the abstract conception of phrase structure 

developed in the previous chapter. The emphasis of this chapter is on the relationship 

between the one-specifier X-bar schema and the mathematics of the golden mean and 

Fibonacci numbers. I propose there to call the X-bar schema the “golden phrase”, as it 

manifests a syntactic recurrence relation exactly parallel to the recurrence relations 

underlying other pieces of “golden” mathematics. As part of highlighting the properties 

of this special structural scheme, I consider other structural possibilities in some detail. I 

develop mathematical techniques revolving around a matrix formulation of syntactic 

recurrence, and provide a number of results of general interest (including a way to define 

a growth factor for each kind of syntactic recurrence pattern, and a way to compute its 

fractal dimension when interpreted as a line division scheme in a natural way).   

  Chapter 8 concludes the dissertation. I review the major results derived throughout, 

and discuss the implications, returning to the very large-bore concerns about biological 

explanation already touched on above. I discuss the prospects for future research 

examining and testing the ideas sketched here, noting the areas that seem most promising, 

and those most problematic. 
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CHAPTER 2: 
BALANCED TREES 

 
 
2.0 Introduction 
 
The purpose of this chapter is to propose the basic thesis of economy of command. In 

brief, I will argue for a minimization constraint on the number and depth of long-distance 

relations in syntactic trees. In spirit at least, this is hardly novel; the basic intuition of a 

locality condition on long-distance relations underlies Minimality (Rizzi 1990), Shortest 

Move, Attract Closest, the Minimal Link Condition (the last three from Chomsky 1995b), 

the Minimal Distance Principle (Rosenbaum 1967), Subjacency (Chomksy 1973), and 

similar formulations. However, those conditions are understood as restrictions on which 

of several available c-command “paths” is chosen (namely, the shortest), in some 

structure determined by unrelated principles. In the present account, it is argued that a 

preference for path-shortening informs structure-building itself (in both Internal and 

External Merge, i.e. in movement and phrase structure).  

  In this chapter, I argue for a particular articulation of this intuition. Section 2.1 lays 

out the conceptual foundations for the claim, reviewing the notion of c-command, and 

pointing out that a well-known minimization condition on such relations can be 

reinterpreted as a constraint on structure-building.  In section 2.2, I distinguish between 

two extremes of tree structure: One, which I call “the Spine”, expresses the maximum 

number of c-command/containment relations. The other, called “the Bush”, expresses the 

minimum. Section 2.3 attempts to justify the simple expedient of counting all c-command 

relations in a syntactic structure as a way to measure their economy of command, noting 
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reasons for caution.  In section 2.4 and 2.5, I sketch how some familiar empirical effects 

can be understood in terms of economy of command. The first discusses agreement 

asymmetries, arguing that they can be understood in terms of path-shortening. The 

second points out a selection of cases (the clause structure of Niuean, the structure of 

Spanish verbs, and the geometry of phi features), where syntactic forms seem to reflect 

the hypothesized ideal of the Bush. In section 2.6, I address the apparent problem that the 

underlying syntactic hierarchy is a Spine. Section 2.7 concludes the chapter. 

 

2.1 C-command and minimal search  
	
  
In what follows, I will be comparing syntactic structures on the basis of the number of c-

command (and dominance) relations they encode. I adopt the familiar definition of c-

command, as follows:  

1)  C-Command (Reinhart 1976: 32) 

Node A c-commands node B if neither A nor B dominates the other and the 

first branching node which dominates A dominates B.  

  However, in this work I assume strict binary branching, in which case any non-

terminal node is necessarily a branching node. I rule out as well relativization of 

command relations to only some non-terminal nodes (as in the M-command of Aoun and 

Sportiche (1983), computed relative to maximal projections, or Lasnik’s (1976) 
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Kommand, referring to NP and S).1 This allows a simpler definition of c-command, 

which I use throughout: 

2) C-command (Simplified): Node A c-commands node B if A and B are distinct, A 

does not dominate B, and all nodes that dominate A dominate B. 

Here, as throughout, I am referring only to irreflexive dominance (i.e. nodes do not 

dominate themselves). It is for this reason that we need not stipulate that B does not 

dominate A. On the other hand, we must now spell out the distinctness of A and B.2  See 

Carnie (2010) for further discussion of these issues. 

  The notion of c-command is central to numerous linguistic relations. Langacker 

(1966) first spoke of the “chain of command” among certain kinds of noun phrases, 

discussing what we would now call Condition C effects. Wasow (1972) and Reinhart 

(1976) further developed the concept of c-command in describing the distribution of 

anaphora. While still central to binding theory, the role of the c-command relation in 

linguistic theory has been extended to linearization (Kayne 1994), the determination of 

relative scope (May 1985), and agreement (as in the probe-goal system of Chomsky 

2001), to mention some core cases. 

  Epstein et al. (1998) rationalize the importance of the c-command relation in terms 

of a derivational view of syntax. As they point out, c-command amounts to the condition 

that syntactic objects can enter into linguistic relations with the contents of the sub-tree 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 See also Barker and Pullum (1990), who formally define a variety of c-command relations along these 
lines. 
2 The distinctness of A and B is handled by the stipulation that A and B do not dominate each other, if we 
take dominance to include the reflexive case (as in Reinhart’s original definition). 
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they are merged with. This suggests a view of c-command as following from a search 

operation accompanying Merge.3   

 

2.1.1  Minimality and minimizing links 

The property of Minimality, as encoded by principles such as the Minimal Link 

Condition, Shortest Move, Attract Closest, and Relativized Minimality (the relevant 

literature is vast; see Chomsky 1995b, Rizzi 1990, among many others), has also been 

interpreted in terms of a search algorithm (Chomsky 2000, 2001).   It is robustly observed 

that in configurations like (3), where X could enter into a dependency with either Y or Z, 

but Y is closer to X than Z is, a dependency may hold between X and Y but not between 

X and Z.4 

 

3)  X … Y … Z 

  

  This closeness is measured by c-command relations: If Y asymmetrically c-

commands Z, Y is closer to X than Z is (and, of course, X must c-command Y and Z to 

potentially enter into relations with them). To a first order of approximation, we might 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This derivational understanding is not the only way of picking out the c-command relation as special or 
significant. As Richardson & Chametzky (1985) and Chametzky (1996) discuss, c-command provides a 
“factorization” of the phrase marker with respect to a node. See those works for details. 
4 Note that the government relation (Chomsky 1981, 1982, and much subsequent work) was subject to a 
very similar locality constraint. However, the locality constraint on government was described as favoring a 
relation between Y and Z over one between X and Z, taking the perspective of looking up the tree, so to 
speak (from Z to a potential governor in either X or Y). In the derivational perspective of Chomsky (2000 
et seq), the relevant locality condition is formulated looking down the tree, regulating long-distance 
relations between a “probe” X and two potential “goals” Y and Z deeper in the tree. 
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reasonably say that syntax seems to minimize links. Such a property fits well with the 

idea that c-command relations are subject to minimization principles, as suggested here. 

  The present hypothesis, that language is designed for economy of command, can be 

seen as one species of principle aimed to “reduce ‘search space’ for computation: 

‘Shortest Movement/Attract’, successive-cyclic movement (Relativized Minimality, 

Subjacency), restriction of search to c-command or minimal domains, and so on.” 

(Chomsky 2000: 99)   To make the connection explicit, on a derivational understanding 

the c-command relation indicates intra-arboreal search accompanying structure-building. 

Forms with fewer c-command and dominance relations form what we might describe as 

minimal search surfaces, minimizing the space searched during an extended derivation.  

 

2.1.2 An alternative: c-command as a grammatical primitive 

Frank & Kuminiak (2000) and Frank & Vijay-Shanker (2001) explore the idea that c-

command is a primitive grammatical relation, rather than a derived relation based on a 

primitive dominance relation, as usually assumed (for an explicit formulation of the 

standard view of trees, see Partee, ter Meulen, and Wall 1993). This has the advantage of 

answering quite directly why the particular relationship of c-command, among all 

possible derived notions based on dominance, should figure so centrally in so many 

linguistic phenomena, while other relations derivable from dominance (and precedence) 

do not seem to play any role in linguistic computation. 

  On that view, the concerns of the present thesis could be reformulated in an 

appealing way. Rather than supposing that the (dominance-based) structure is such as to 
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minimize the number of resulting, derived c-command relations, “economy of command” 

could be cast as a preference for syntactic structures with minimal specifications. If c-

command relations are a primitive of grammar, and syntactic structures are specified by 

listing their c-command relations, then structures with fewer such relations are literally 

“smaller” than structures with an equal number of nodes, but more c-command relations. 

Such a conception makes a minimization principle on c-command relations especially 

natural. Nevertheless, in the following chapters I will keep to the more traditional view 

for the sake of simplifying the exposition. 

	
  

2.2 Divergence of Extremes 

Let us start with the observation that different binary-branching arrangements of the same 

number of nodes may encode different total numbers of c-command or dominance 

relations. Consider the two trees in (4a & b). In a very real sense, there is more to know 

about the first tree than the second; it encodes more hierarchical relations, even though 

they are built from the same number of constituent pieces. For example, there are 12 

‘contains’ relations5 in (4a), but only 10 in (4b). We find the same numbers if we count c-

command relations, the syntactic relation at the heart of long-distance phenomena 

(entering into binding, scope, linearization, movement, and other fundamental processes). 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 I use “containment” and “irreflexive dominance” interchangeably. 
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4)   a.  A                   b.         A                        
 
        a             B                                B                     C 
 
            b            C                 a            b        c           d 
 
           c       d   
  

Containment relations:   
 A contains:  a, B, b, C, c, d       A contains:  B, C, a, b, c, d 
 B  contains: b, C, c, d      B contains:  a, b 
 C contains:  c, d        C contains:  c, d   
      ∑ = 12            ∑ = 10 
 
C-command relations:  
    a c-commands:  B, b, C, c, d     B  c-commands:  C, c, d 
 B  c-commands:  a        C  c-commands:  B, a, b 
 b  c-commands: C, c, d      a  c-commands: b 
 C  c-commands:  b        b  c-commands: a 
 c  c-commands:  d        c  c-commands: d 
 d  c-commands:  c        d  c-commands: c 
       ∑  = 12            ∑ = 10 

 
This difference can be brought out more perspicuously in graphical form. Below, I show 

each of the c-command relations as a directed arrow; the tail node of the arrow c-

commands the tip node. Note that there are more relations in the right-branching “spine” 

than in the maximally balanced “bush”. 

5) Spine: 12 c-command relations. 
 
 
 
 
 
 

 
6) Bush: 10 c-command relations. 
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  The difference between the number of c-command relations in the trees above is 

small, but for larger trees the difference between the extremes becomes very large. With 

8 terminals, we find 56 c-command relations in the strictly right-branching tree, but only 

34 in the maximally bushy tree. 

7) a. a                              b.          a 
 
  b         c                                  b                                       c 
 
        d           e                       d                 e                 f                 g  
 
           f        g                h          i           j           k       l       m          n          o 
         
                  h        i                          
 
                   j         k    
 
                            l         m 
  
                           n        o   
 
C-command relations: 

a: -          a: - 
b: c,d,e,f,g,h,j,i,k,l,m,n,o   b: c,f,g,l,m,n,o 
c: b          c: b,d,e,h,i,j,k 
d: e,f,g,h,j,i,k,l,m,n,o    d: e,j,k 
e: d          e: d,h,i 
f: g,h,j,i,k,l,m,n,o      f: g,n,o 
g: f          g: f,l,m 
h: j,i,k,l,m,n,o       h: i 
i: h          i: h 
j: k,l,m,n,o        j: k 
k: j          k: j 
l: m,n,o         l: m 
m: l          m: l 
n: o          n: o 
o: n          o: n 
 
Σ = 56         Σ = 34 
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Restricting attention to binary-branching (Kayne 1984), we find two extremes of 

structure that provide the upper and lower boundaries on the total number of c-command 

relations present:  The Spine (8a), a maximally deep tree, maximizes the number of c-

command relations (or containment relations; their totals are identical in binary-

branching structures) for a given number of terminal nodes and the Bush (8b), a 

maximally shallow tree, minimizes the number of c-command (= containment) relations 

for a given number of terminals. The trees below illustrate these two extremes. 

8)  a. The Spine      b. The Bush 
 
 
 
 
 
 

The divergence in c-command/dominance totals is considerable for even moderately 

large trees; if the cartographic project (see discussion and references in Chapter 3) is 

correct in identifying dozens or even hundreds of heads in the tree, the difference 

between best and worst case may be very large indeed, more than an order of magnitude 

apart. Table 1 below illustrates this divergence, graphing the total number of c-command 

(or containment) relations defined in the tree as a function of the number of terminal 

nodes in the tree. The upper boundary curve represents the number of c-command 

relations in the Spine; the lower boundary is the number of c-command relations in the 

Bush. Other tree-shapes fall in the shaded area between them. 



	
   37	
  

Table 1: C-command relations by depth. 
 
 
And so on: the larger the tree, the greater the divergence between the extremes. In Table 

2 below, I give the total number of c-command relations in Spine and Bush structures of 

various sizes and the ratio between them, including general formulae. 

Number of 
terminals: 

C-command 
relations in 
Spine: 

C-command 
relations in 
Bush:   

Ratio of  
Spine/Bush: 

4 12 10 1.2 
8 56 34 1.65 
16 240 98 2.45 
32 992 258 3.84 
64 4,032 642 6.28 
128 16,256 1,538 10.57 
n=2k n(n-1) 2(n(k-1)+1) ~ 2k-1/(k-1) 

(n/2)/log2(n/2) 
Table 2: C-command relations in Spine and Bush. 

 

 
 

Spine 

Bush 
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Explicitly, the upper curve in Table 1 can be expressed as a function ∑ of the number of 

terminals n, as in (9). 

9)  ∑(n) = n(n-1) 
 
The formula for the lower curve (the Bush) is rather more complicated (10). 
 

10)   for 2k ≤ n < 2k+1, 
   ∑(n) = 2(n(k-1)+1) + (k+1)(n-2k) 
    Where n = 2k, ∑(n) = 2(n(k-1)+1) 
 
What values of n are appropriate: how big are real syntactic structures? Consider what 

Cinque and Rizzi (2010) have to say on the topic. 

“A guiding idea of much current cartographic work is that the inventory of 
functional elements (heads or specifiers of functional projections) is much larger 
than is generally thought. […] To judge from Heine and Kuteva’s (2002) four 
hundred, or so, independent grammaticalization targets, the number of functional 
elements must at least be of that order of magnitude.” (Cinque & Rizzi 2010)   
 

Suppose then that n (the number of terminals in the tree) = 400; what does the difference 

between maximum and minimum totals of c-command relations look like at that scale of 

tree size?6 

11) For n = 400: 
  Spine:  ∑ = 159,600 
  Bush:  ∑ = 3,090 
  Spine/Bush: ~51.65 
 
In other words, the number of c-command relations defined over a Spine with 400 

terminals is more than fifty times greater than the number of such relations defined over a 

Bush with the same number of terminals, a very considerable difference.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 Of course, with phases (Chomsky 2000 et seq), or some other version of the syntactic cycle, even if the 
inventory of functional heads is this large, the effective size of trees may not be. The point of this example 
is just to get a sense for how extreme the difference between best and worst case is, at a point representing 
a reasonable upper limit on tree size. 
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  This section has explored the mathematical basics of how the number of c-

command relations scales with tree size, pointing to two “poles” of structure that bound 

the possibilities. In the next sections, I discuss some evidence that supports the idea that 

c-command minimization plays a role in grammatical conditions.  

 

2.3 On counting c-command relations 

As an empirical matter, it seems likely that for some c-command-based relations, some 

pathways matter more than others. This is clearest for computations such as agreement, 

or binding, or scope, and is moreover explicit in the “relativized” portion of Rizzi’s 

(1990) Relativized Minimality. There seem to be a number of distinct systems that 

establish relations over the c-command pathways in a tree, with respect to which only 

certain parts of the tree are relevant. For example, the Binding theory applies to nominals, 

not other categories. Likewise, the establishment of agreement relations involves a 

relation between only certain kinds of categories (those bearing phi-features). 

  However, certain other relations, for which c-command and/or dominance defines 

the relevant structural pathways, are not relativized in this way. Linearization, in Kayne’s 

(1994) influential work, is computed from c-command relations of the most general sort, 

not relativized by category type.7  In the computation of phrasal stress, we again see a 

long-distance/iterated vertical relation that is sensitive to the bare syntactic structure; this 

computation is not relativized to certain category types. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 This is not quite true; Kayne’s formulation relies on a distinction between terminal and non-terminal 
nodes, and, to allow specifiers/phrasal adjunction, a segment/category distinction. The point is that the 
distinctions are no finer-grained than that; in particular, it is not the case that verbs, say, are linearized by 
principles distinct from those that apply to nouns. 
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  Other authors have suggested that at any point in the derivation, only one direction 

of c-command is exploited. This has been proposed in conjunction with theories of 

feature checking, and the idea that all instances of Merge satisfy features, with an 

incomplete item asymmetrically probing a “saturated” element it Merges with. Another 

proposal leading to the same conclusion is Uriagereka’s (1999) theory of Multiple Spell 

Out; in that framework, one or the other of two complex branching objects that Merge 

must be “flattened”, its derivational cascade terminated and embedded within another, 

containing the object that “projects”, in traditional terms. This idea finds support in recent 

proposals like Narita’s (2010) insistence that Merge always takes the form {Head, 

complement}. 

  In light of these complications, one approach would be to explore a much “uglier” 

(but more realistic and empirically refined) view of which c-command and dominance 

pathways “count”. For example, we can imagine that the c-command relationship 

between a verb and a subject it agrees with ought to be minimized, because that pathway 

will bear a costly computation in determining the form of actual expressions. On the 

other hand, vertical relations that do not carry any obvious “traffic” might be thought not 

to matter as much, or at all. Or again, why not simply incorporate the asymmetry of c-

command discussed above, if that seems to match the empirical picture?   

  The reason I have not chosen to pursue these complications and refinements is a 

matter of my goals. The point, again, is to discover what the most austere assumptions 

about language lead to. In this case, I assume only binary branching, and that long-

distance dependencies will be established over the scaffolding of c-command (or 
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dominance) relations provided. I do not know of any principled way to decide, in advance 

and at the level of generality pursued here, which such pathways will bear costly 

computations (e.g., overt agreement), and which will participate only in “background” 

computations (like linearization and phrasal stress). It seems to me that the only 

reasonable way to proceed with this project is to simply count all the relations in the 

structure equally. In particular, it seems misguided, given these goals, to build in from the 

start all the details of the system. The hope, rather, is that we may gain some insight into 

how the phenomenon ends up working out, by growing essential details from a minimal, 

principled basis. I will therefore keep to the simplest assumptions, pointing out again that 

this work is but a preliminary investigation of these effects. I leave to future research an 

exploration of what predictions might follow from a more nuanced scheme for counting 

the cost of alternative configurations with respect to the various “flavors” of long-

distance dependencies.  

 

2.4 Agreement asymmetries and ‘minimizing links’ 

In this section, I review some familiar facts regarding the connection between movement 

and the richness of agreement. I suggest an interpretation of these patterns as reflexes of 

structural c-command minimization principles: the principle of economy of command 

predicts that richer agreement should more strongly trigger movement.   

  Miyagawa (2010) argues, on the basis of pre-/post-verbal subject agreement 

asymmetry facts in some Northern Italian dialects and Arabic, that (sufficiently rich) 

agreement triggers movement. We can describe this as a preference to shorten the c-
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command paths actually used to compute agreement. It suggests a penalty for too much 

“traffic” on long c-command pathways, lending some plausibility to the notion that 

minimization of c-command relations plays a role in the syntax.  

  Miyagawa notes that in the Italian dialects Fiorentino (12a) and Trentino (12b), 

verbs resist agreement with post-verbal subjects. In this configuration, agreement is the 

default 3rd person masculine singular. 

12)  a.  Gli è venuto delle ragazze.  (Fiorentino)  
      b.  E’  vegnú     qualche putela.  (Trentino)  
       is   come      some girls  
            ‘Some girls have come.’   
       (Miyagawa 2010: 6, citing Brandi and Cordin 1989:121–122) 
 
There is no plural verbal agreement for plural post-verbal subjects: 

13)  a. *Le   son venute   delle ragazze. (Fiorentino)    
  b.  *L’    è vegnuda   qualche putela. (Trentino)  

     they  are come     some girls  
    ‘Some girls have come.’ (ibid.) 
 
However, a preverbal subject triggers agreement (in this case, for feminine gender): 

14)  a. La Maria la   parla. (Fiorentino)  
   b. La Maria la   parla. (Trentino)  
                   the Mary  she speaks  
    ‘Mary speaks.’   (ibid.)  
 
Miyagawa notes a similar agreement symmetry in Arabic. Unlike the all-or-nothing 

asymmetry observed in the Italian dialects discussed above, in Arabic there is a split 

between full and partial agreement: 

“[P]ostverbal subjects trigger the partial agreement of person and gender 
(the verb also has the default singular agreement form) whereas preverbal 
subject triggers the full agreement of person, gender, and number (e.g., 
Bahloul and Harbert 1993, Benmamoun 1992, Fassi Fehri 1993).” (ibid, 8) 
 

The following examples illustrate: 
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15) a. Qadim‐a   (/*qadim‐uu) al-ʔawlaadu.  
    came   ‐3MS  came  ‐MP the‐boys‐3MP  
    ‘The boys came.’  
 
    b.  Al‐ʔawlaadu   qadim‐uu   (/*qadim‐a) [t]  
    the‐boys‐3MP  came  ‐3MP  came  ‐3MS  
    ‘The boys came.’ (Bahloul and Harbert 1993:15, cited in Miyagawa 2010:8) 
 
At least descriptively, we may say that the c-command path bearing subject-verb 

agreement is shortened when it bears more traffic (richer agreement). To make this clear, 

let us sketch some rather conservative assumptions about the structures involved. 

Standard analyses have the moved, preverbal subject in the specifier of the agreement-

bearing head (often taken to be T, elsewhere AgrS). The unmoved subject is taken to be 

in the specifier of vP, again a standard analysis. There is ample reason to posit additional 

structure between the T and v layers. For example, Aspect is often taken to be Merged 

above v but below T. Supposing so, we have a tree schematically like (8) (leaving open 

the possibility that this may be shorthand for richer structure).  

16)  TP 

 SubjDP  T’ 

     T   AspP 

       Asp   vP 

     SubjDP      v’ 

        v      VP 

  Compare the longer c-command path, from T to the post-verbal subject DP, which 

bears partial or default agreement (17a), with the shorter path from preverbal subject DP 

to T, which bears full agreement (17b). 
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17)  a.     TP          b.     TP 

     T   AspP        SubjDP    T’ 

       Asp   vP          T    AspP 

     SubjDP      v’         Asp  vP 

        v      VP          tSubjDP  v’ 

  T…Subj:  Default/partial agreement  Subj T: Full agreement 

This fits well with the perspective of Chapters 4 and 5, where I suggest that movement is 

cheap and ubiquitous, while c-command relations are costly. In this case, movement 

brings the agreed-with subject as close as movement can bring it to the agreeing head, by 

hypothesis from a more remote position (perhaps much) deeper in the tree. This example 

illustrates one possible reflex of a concern for minimization of the depth of c-command 

relations in grammatical conditions.  

  Notice that although movement involves adding a new, linguistically relevant c-

command relation (the one bearing the long-distance relation between the moved object 

and its deleted copy or trace), it nevertheless serves to reduce the overall “wirelength” 

(the sum of the lengths of all of the relevant c-command relations). In particular, 

movement creates a configuration in which the c-command paths along which agreement 

is established are shortened. Thus, despite the “extra step” involved in doing movement, 

the resulting form is in a sense more optimal. It is the central ideas of this thesis that this 

“path-shortening” explains a large body of grammatical phenomena. 
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2.5 The bushiness of natural language expressions 

The basic premise of this work is that the ideal syntactic structure, all else equal, is a 

Bush rather than a Spine. This seemingly conflicts with the consensus that the underlying 

base structure is a Spine (see the next section for more on this issue). However, if the 

burden of c-command based computation is incurred in the processes which “read” 

syntactic structure at the interfaces with non-linguistic mental components, then what 

matters is not the base, but the structure delivered to the interfaces (reflecting movement). 

Furthermore, and of central importance in this work, the very same cartographic literature 

mentioned above, following Kayne (1994), identifies a host of leftward movements 

involved in deriving the surface order of many languages, often a tangle of such radically 

transforming the base order. Each such movement creates a left branch, deviating from 

the Spine. Thus, at least in some languages, movement serves to pack the tree structure 

into something close to the ideal of the Bush. The following structure for the clause 

structure of Niuean, adapted from Kahnemuyipour and Massam (2006), illustrates: 

18)            QP 
 
 
                                            AspP 
                                                          Q            AgrSp 
                                    aiP 
                                                Asp     taiP   DP 
 
                          ManP                                         AgrS      AgrOP 
                                         ai       tManP 
                 DirP                                                            DP 
                             Man     tDirP                                                AgrO      tAspP 
 
          VP 
                     Dir        tVP 
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From a strongly right-branching base tree, the movements found in Niuean create a very 

bushy tree. In fact, depending on the structural details of the categories here, the surface 

form above may actually be as close to the Bush as one can get, a matter of considerable 

interest if true.8 

 At the level of the word the tree forms we find may in fact be quite bushy, cf. 

Oltra-Massuet and Arregi (2005) on Spanish. Inferring syntactic structure from 

phonological facts, they give the following analysis of the form of verbs in Spanish (their 

8a, p 46):9 

19)      T 
 
    v               T 
 
    √       v               T        Agr 
 
   v         Th    T   Th 
 
They give the following structure for future and conditional verbs (their (16), p 53): 

20)           T 
 
               Fut         T 
 
    v               Fut   T   Agr 
 
    √       v             Fut       Th   T   Th 
              [±Past] 
    v      Th      
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Difficult questions arise as to how to reconcile such an idea with undeniable cross-linguistic variation (not 
all languages have the same movements). One widely-discussed possibility is that the universal structure 
revealed by the cartographers is only partially represented in particular languages (see the next chapter for 
relevant discussion). If so, it is possible that each language has the best movements for its particular 
“reduction” of the universal structure. In light of the complexity involved in deriving testable predictions 
from this idea, I leave an exploration to future work (though see Chapter 4 for further relevant comments). 
9 “Th” here stands for a theme vowel.  
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  In this language, the syntactic form of verbs, as revealed by foot structure, is rather 

bushy, strongly reducing total c-command/dominance relations compared to a spinal 

(right-branching) arrangement of the same terminals. It is possible to quantify how 

“bushy” the structure in (20) is. Recall that, for 8 terminals as in this tree, there will be 

between 34 and 56 total c-command relations. In (20), there are 36 total c-command 

relations, one step away10 from absolute optimization in this sense. It is the point of this 

dissertation to argue that this sort of surface tree shape is neither exceptional nor 

accidental; language is this way for a reason. 

  When we examine the internal structure of phi features—and recent work indicates 

that the details of this structure are ‘visible’ for c-command, for example entering 

piecemeal into agreement relations with distinct controllers (see e.g. Bejar and Rezac 

2009)—we likewise seem to find somewhat bushy structure. For example, Harley and 

Ritter (2002: 25) propose the following universal feature geometry for phi-features: 

21)  Referring Expression (=Agreement/Pronoun) 
 
               PARTICIPANT                         INDIVIDUATION 
 
      Speaker       Addressee         Minimal      Group      CLASS 
 
                                               Augmented           Animate   Inanimate/Neuter 
 
                                                                       Masc.       Fem.     (Harley & Ritter 2002: 25) 
 
Of course, Harley and Ritter have in mind an implicational structure, like the feature 

geometries of phonology, representing logical dependency in the cross-linguistic 

distribution of phi features (if a node in this geometry is present in the morphology of a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
10 Note that the number of c-command relations in a binary-branching tree must be an even number. 
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language, all dominating nodes must be as well). It is a further step to claim that this is 

effectively syntactic structure (and note the ternary branching present under the 

Individuation node), though Harley (p.c.) indicates that this is a reasonable 

interpretation.11 

  All of this is just to stave off rejection out of hand: the branching forms of language 

reviewed above are rather closer to the Bush than to the Spine. Excepting the feature 

geometry, intended to be universal, readers may object that these examples are ‘cherry-

picked’: not all languages have radical movement like Niuean, or bushy words like 

Spanish.  

  What about languages like English, say, where the phrase structure is thought to 

surface in something closer to the base order, and word-internal structure is generally 

impoverished?  It is not clear that that is an accurate characterization; as reviewed in the 

next section, there is some evidence for movement low in the English verb phrase on the 

basis of ordering facts. And English uncontroversially has prolific movement of other 

kinds, including movement of nominals for Case; as I argue later in much more detail, 

such movements seem to be well-chosen to balance the resulting tree.  

 

2.6 On the spinality of the base 

An important question immediately arises, at this point. Why should the base structure 

effectively be a Spine, as seems to be the consensus, when that structure is the worst 

possible in terms of minimizing long-distance dependencies?  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 See also Déchaine & Wiltschko (2002), who advance a less articulated (but specifically syntactic) 
proposal for the internal structure of nominals, distinguishing DPs, PhiPs, and NPs. 
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  There is every reason to think that the base structure does not survive to the surface 

in any language, maybe not even in any domain (e.g., phase). Take English as a case in 

point: the gross nominal order, as examined in Chapter 5, reflects the supposed base 

order, Dem > Num > Adj > Noun (Cinque 1996, 2005, Abels & Neeleman 2009). But a 

closer look suggests that quite significant movement occurs even inside English DPs, as 

the examples below illustrate: 

22) [the very same thing [that you saw]] 

23) [the drawing [of the killer] [that you made]] 

Relative clauses follow the noun they modify. If the noun is at the bottom of the nominal 

tree, and relative clauses are Merged higher up (Kayne 2008, Cinque 2003), then this is 

evidence for leftward movement of the noun. An analysis of relative clauses as 

complements of nouns is inconsistent with examples like the second above, where a 

theme-like of-phrase intervenes between the head noun and the relative clause. 

24) the picture [on the wall]  

Of course, PPs may follow the noun as well. 

25) the drawing-s [of the killer] 

The appearance of plural as a suffix on the noun is also interpreted as arising via 

movement of the noun to the left of that position (Julien 2002, Svenonius 2007). That 

understanding of suffixation as movement also argues for a non-complement position 

even for of-phrases. Indeed, Kayne (2008) argues that nouns cannot have complements in 

principle, being self-Merged (cf. Guimarães 2000) at the beginning of the derivation of a 

DP. 
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26)  your dog/those dog-s of your-s 

The last example shows that possession may also be expressed post-nominally, 

dissociated from the pronominal demonstrative. All of the post-nominal material in the 

examples above, save the plural, might well collapse as forms of (sometimes reduced) 

relative clauses, including as well some post-nominal adjectives (a man alone, etc.). Even 

so, we have evidence then for at least two post-nominal positions, and so at least one 

move carrying N(+) leftward. 

  Consider next the clausal domain, again keeping to English. The basic order of 

elements in the clausal spine seems, at first glance, to remain undisrupted in English. But 

that misses the important fact that in this language, DP arguments move, prolifically and 

obligatorily, along that Spine. There is good evidence for a “Raising to Object” move of 

object DPs to a specifier position just below the landing site of the verb (Koizumi 1993, 

Johnson 1991), with the verb taken to move to “little v” (Kratzer 1996). In other words, 

an English vP has a structure schematically like this: 

27) [√Verb v [ ObjDP … [ … tObjDP … t√Verb ]. 

  Higher up, English subjects undergo the still-mysterious EPP raising to (a specifier 

near) TP, reinterpreting somewhat the Extended Projection Principle of Chomsky (1981) 

in light of Koopman & Sportiche (1991).  And wh-phrases and quantifier phrases raise 

still further into CP (Chomsky 1986), sometimes covertly. Within the spine itself, the 

verbal morphology exhibits Affix-Hopping (Chomsky 1957), another deviation from the 

expected base order. 
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  The overall picture is that quite radical reordering occurs even in a language like 

English, often thought to basically preserve the base order in its surface form. More 

generally, in any language, any instance of non-head-finality indicates movement, 

according to Kayne (1994). So already in the relative order of subject, object, and verb, 

we must admit movement in the majority of languages (i.e., in all but one base order: 

SVO if the object is introduced as complement of the verb, as traditionally assumed but 

lately questioned; or SOV if the object, like all arguments, is introduced in a specifier 

position within an extended projection of the verb). 

  In light of these remarks, another crucial point to be made is that the concern of this 

thesis – economy of command, the hypothesized bias to minimize the burden of long-

distance dependencies in linguistic expressions – is construed as realizational. To put it 

simply, what matters is economy of command in the representations presented to the 

interfaces. In particular, such objects generally do not reflect the base form, but rather the 

transformed, post-movement result. 

  Chomsky (2001) suggests that the very dichotomy between merge and movement is 

a mistake, rather interpreting movement as merge applying to an object and a proper 

subpart thereof. On that view, we may say that displacement is a natural part of structure-

building; conversely, the structure that would result from pure external merge (the spinal 

base) is not a naturally-occurring syntactic structure. Seen this way, the base is really the 

abstract input to the structure-building system, an idealization that never appears in 

surface form as such.  
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  Looking at the issues the other way round, so to speak, much recent work finds 

conceptual motivation for spinal, head-complement structure as the ideal form of syntax. 

This idea appears, in various forms, in Narita (2010), in Uriagereka’s (1999) 

“derivational cascades”, in Starke’s (2004) proposal to eliminate specifiers (conflating 

them with heads, such that head-complement configurations exhaust syntactic structure), 

in Jayaseelan’s (2008) “linear” syntax, in Chomsky’s arguments based on minimal search 

in labeling, related to Moro’s (2000) ideas on Dynamic Antisymmetry, and in Uriagereka 

& Hornstein’s (2002) “reprojection” analysis of quantifiers.12   

  Another line of attack on understanding the spinal nature of the base is to note that 

the hierarchical links it instantiates are shorthand for selection relations, and selection 

seems to be basically linear (limited to complements)13. Recalling again the concern to 

minimize long-distance dependencies, the relations that form the spinal base are already 

maximally local. If only the shortest possible paths carry computation (here, selection of 

an appropriate complement for a head), then no preference for bushy structures is 

motivated at that level; it is only when truly long-distance dependencies come into play 

that structure makes a difference for computational efficiency. 

  Given that strict head-complement structure finds robust conceptual motivation in 

the above-mentioned works, we may take it that the spinal nature of the basis has its roots 

in such concerns. What is surprising, and requires explanation, is the bald fact that 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Their analysis is of considerable interest from the present perspective, in that it argues that elements 
combine with multiple arguments (for a quantifier, its restriction and its scope) piecemeal, derivationally 
(in effect, through two distinct stages of head-complement structure).  
13 Thanks to Andrew Carnie for discussion on this point. Note that selected arguments seem to involve 
specifier selection, though perhaps indirectly, through selection of an argument-introducing functional 
head. 
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surface structure deviates from that ideal. In this regard, the present thesis has much to 

offer: namely, a compelling reason to transform the simplest kind of hierarchical 

structure into a more complicated—but in present terms more optimal—form. 

 

2.7 Summary 

This chapter has reviewed the notion of c-command. I briefly explored the mathematical 

terrain of c-command and dominance relations. I described two extremes of branching 

structure (maximally deep, and maximally shallow), and derived expressions for how the 

total number of c-command (and dominance) relations scale with tree size.  

  I discussed some examples that arguably exhibit signs of the structural preference 

argued for here (including Niuean clause structure, Spanish word structure, and 

morphological feature geometry). I pointed to the well-known property of 

Minimality/locality and certain agreement asymmetry facts as lending some credence to 

the hypothesis that minimization of c-command relations plays a role in determining 

syntactic conditions. 

  Much Minimalist work has been concerned with the notion of derivational 

economy. Economy of command is closely related to these concerns; however, especially 

in terms of motivating movement, it is better described as a matter of interpretational 

economy. That is, the benefits of movement obtain, not within narrow syntax, but in the 

mapping to interface interpretations of syntactic form as sound and meaning, proceeding 

by phase. It is only in post-syntactic interpretation that movement reduces the search 

space. In this way, economy of command relates also to what has been described as “bare 
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output conditions”, another central concern of Minimalist theorizing. In effect, economy 

of command is a matter of minimizing the cost of reading syntactic forms at the 

interfaces. 

  In the next chapter, I take up further relevant empirical considerations. In that 

chapter, I argue that minimization of c-command (and dominance) ‘links’ matters most in 

post-syntactic structure, after movement has applied. Leaving the details for later, there is 

reason to think that a large core of c-command-based linguistic computations (I have in 

mind linearization, agreement, and binding, and perhaps further relations) applies only to 

the output of movement. In that case, transformation of a spinal base structure into a 

bushy surface form can be understood in terms of minimization of the total number of c-

command relations, as read by post-syntactic processes.  
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CHAPTER 3:  
UNIFORM STRUCTURE AND CYCLIC INTERPRETATION 

 
3.0 Syntactic assumptions 

In this chapter, I outline the assumptions I adopt about the architecture of the grammar.  

There are two broad issues to be addressed here. The first concerns the amount of 

structure present in the expressions of natural language, and whether and how that 

structure can vary between languages, and between expressions in a single language.  The 

second issue revolves around cyclic interpretation, the notion that the syntactic engine 

interfaces with external systems by handing off representations at designated intervals 

(phases, in Chomsky’s 2000 terms).   

  In regards to the first issue, structure and variation, I argue that syntactic structure 

is nearly uniform across all languages, and across expressions.  There are two caveats I 

will discuss; the first concerns variable extent of projection, and the second is about 

variation in the number and location of nodes associated with agreement and negation.  

Variation of the first kind will be considered in Chapter 4, where I will argue that it plays 

a crucial role in triggering or failing to trigger certain movements. The second kind of 

variation will be largely set aside in this work.  

  With respect to cyclic interpretation, my goal is to justify the approach to 

movement developed in chapters 4 and 5, where I will argue that movement is driven by 

economy of command.  The reasoning here can be summarized as follows. First, the c-

command relations that seem to “count” in linguistic relations hold at the interfaces, 

where a chain of copies formed by movement collapses onto a single position, generally 

the highest in the chain (lower copies are effectively invisible).  Thus, the c-command 
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relations that enter into the computation of linear order, agreement, (some) binding, and 

nuclear stress are fed by movement.  This means that movement can, in principle, reduce 

the number of c-command relations effectively present (by transforming a spinal 

structure into a more bushy one, before it is “read”). I show explicitly how bushier 

structures present less of a computational burden at the interfaces. 

 

3.1 Articulated syntax 

Let me first address my assumption that ‘terminal in the tree’ should not be identified 

with ‘word in the surface structure’ (in favor of multiplying the number of the former 

taken to correspond to the latter). It is an old idea that some word-internal, 

‘morphological’ structure just is syntactic structure, a more articulated cartography 

obscured by higher-order, secondary groupings. This idea has gained prominence in 

recent work, with much of what was once thought to be the domain of morphology taken 

over by syntax (Halle & Marantz 1993, 1994, Marantz 1997).  

  Julien (2002) gives an extreme version of this view, supposing that words are in 

effect something like constellations, a perceptual illusion caused by accidents of syntax, 

and that the individual terminals that end up forming a ‘word’ need have no consistent 

structural relationship, other than being linearized adjacent to each other. In particular, 

Julien rejects head-adjunction structures like the following as the only permitted syntactic 

structure of a complex word: 

(1)      X0 

     Y0    X0 
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That is, for Julien word-internal structure need not indicate recursion of X0 (head 

adjunction), as for Travis (1984), Baker (1988), and others.  Instead, many complex 

words are to be reanalyzed as arising from movements rearranging a fixed base order, 

perhaps quite radically. This work aligns with radical movement analyses seeking to 

replace head-movement with phrasal movement, including Müller (1998), Koopman & 

Szabolcsi (2000), Mahajan (2000), Julien (2002), Svenonius (2007), and many more. 

  This entails, clearly, a denial of the so-called Lexicalist Hypothesis, the view that 

words have a privileged syntactic status as indivisible atoms of the computation, with any 

internal structure formed by a distinct word-formation system, and opaque to the 

syntactic computation (Chomsky 1970, Williams & DiSciullo 1987, Anderson 1992, 

Ackema & Neeleman 2004, among many others). The issue is too large to tackle here, 

but I note that the results I derive below resonate strongly with the general view of a 

many-to-one correspondence of syntactic terminals to words, and radical movement (to 

derive the “word-internal order” of smaller syntactic units).  

  I draw, instead, upon the tradition of comparative micro-syntax or cartography. The 

beginnings of this project, expanding the range of functional categories admitted within a 

single language, while limiting or eliminating variation among languages in the number 

and order of the same, can be seen in Chomsky’s (1986) expansion of the X-bar 

formalism from the lexical categories to functional categories associated with the 

sentence (CP and IP). Abney (1987) added DPs to the inventory of functional elements; 

Pollock (1989) “split” IP into multiple projections to account for cross-linguistic 

variation in verb-movement possibilities. Larson’s (1988) VP-shell analysis of 
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ditransitives implied an expanded cartography of VP, a point of view in line with the 

work of Hale and Keyser (1993), while Kratzer (1996) proposed adding a “little v” above 

the verb. The project developed with Rizzi’s (1997) proposals for an articulated “left 

periphery” (CP), while Cinque (1996, 1999) produced detailed cartographic maps on the 

basis of intricate facts of adjective and adverb ordering. See the works collected in 

Cinque (2002), Rizzi (2004), and Belletti (2004) as a starting point for this enterprise. 

  Cinque & Rizzi (2010) discuss successes for the cartographic project, including 

evidence in favor of the universality of the structures proposed:  

 “[…] subtle evidence for the presence of a DP projection in languages 
like Serbo-Croatian, Russian, and Japanese, which lack overt determiners 
(Progovac 1998, Pereltsvaig 2007, Furuya 2008); or the indirect evidence 
discussed in Kayne (2003,219) and Cinque (2006b) for the presence of 
numeral classifiers in languages like English and Italian, which are 
traditionally taken not to be numeral classifier languages.” 

 
 
 
3.2 Uniformity of structure 
 
For the purposes of Chapter 5, I will assume a rigidly fixed universal structure for the 

shape of the DP.  This is partly a methodological choice, as it makes for the cleanest, 

most restrictive predictions about what that shape must look like.  It is also the simplest 

assumption one could make, a consideration that carries some weight, given the goals of 

this work. 

  However, I think that a more reasonable assessment of the facts would provide for 

some degree of variation in structure, of at least two kinds.  First, there is the matter of 

more or less extended projections.  Second, there is a class of elements that appears not to 
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have a fixed position with respect to the rest of the cartographic hierarchy: agreement and 

negation. I consider each of these in turn. 

 

3.2.1 Variation I: Extent of projection 

The nominal domain illustrates: we have bare nouns, PhiPs (Déchaine & Wiltschko 

2002), DPs, (and perhaps PPs are a further extended projection of nominals, cf. 

Grimshaw 1991).  Each arguably represents a further elaboration on the next smaller 

structure.  The size of the extended projection varies between constructions in a single 

language: so in English, sometimes nominals are bare nouns, sometimes they have richer 

structure.  The extent of projection might also vary between languages, with some 

languages maximally projecting only a portion of the full structure. 

  This view of structural variation as involving variation in the extent of projection 

finds some support in acquisition facts.  Cinque (2004: 684) points out that distinctions in 

aspect are robustly acquired before distinctions in tense, citing Antinucci and Miller 

(1976), Weist (1986), and Schlyter (1990); moreover, acquisition of aspectual adverbs 

precedes that of temporal adverbs. Ouhalla (1991) goes further, suggesting a fixed order 

of maturation of functional categories.  The basic picture is of a universal hierarchy that 

“grows” bottom-up as the child acquires a language.  On this view, a possible source for 

differences among languages is variation in the upper limit of extended projection.  This 
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calls to mind the debate about whether some languages lack determiners (the idea being 

that the nominal projection in such languages is impoverished at the top).1 

 

3.2.2 Variation II: Agreement and negation 

There is a second kind of structural variation, revolving around a class of elements 

(negation and agreement) which, as even Cinque (1999) admits, do not occupy a unique 

place in the hierarchy.   

“In the recent literature it is sometimes claimed that the relative order of 
functional heads is subject to parametric variation across languages.  
Interestingly, the cases which are brought up to support this conclusion all 
involve, in one way or another, the position of negation or of agreement 
with regard to other functional heads, especially Tense[.]”  
(Cinque 1999: 136).  
 

He goes on to note that “[T]he position of negation and of agreement [….] can vary even 

within the same language.” (1999: 137)  On the other hand, he argues against the idea 

that other functional heads can be optionally present, even when they receive no overt 

morphological expression.  Instead, even when functional heads have a default 

interpretation, often with no overt morphological realization, they are still structurally 

present (Cinque 1999: 131). He offers the following pair of examples, indicating that 

despite the considerable difference in overt material present, they both plausibly have the 

same full functional structure.2 

                                                
1 The question is not whether all languages overtly express the determiner category—some clearly do not—
but rather whether the abstract structure is still present or not.   
2 There are two issues here. The first is whether an element b, hierarchically between a and c (a > b > c), 
can be omitted if a and c are present. The second is whether, given some portion of a domain (say, a 
clause), the complete structure must always be projected (i.e., for a > b, whether the presence of b entails 
the presence of a), or if there is an option to “truncate” the top of the structure (this is implicit in the 
discussion of the status of ECM clauses as TPs or CPs, cf Bošković 1995). I assume that “inner omission” 
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(2)  a. Prices rise. 

      b. Prices must not have been being raised. (Cinque 1999: 131, his (2a-b)) 

We might think of the variation in the number and location of agreement and negation 

nodes as “insertions,” extending the universal base structure with further nodes at 

variable internal locations.3   

  Supposing that semantic uniformity is informative with respect to syntactic 

uniformity, Croft’s Semantic Map Connectivity Hypothesis is highly relevant to the 

discussion here: “any relevant language-specific and/or construction-specific category 

should map onto a connected region in conceptual space.”  (Croft 2001: 96) 

  The claim is that the background conceptual space is universal, with variation 

among languages in their semantic categories arising from a kind of syncretism: some 

contiguous portion of the articulated universal structure is “collapsed” onto a specific 

category, in a particular language.   

  It is not too large a leap, I think, to identify this conceptual structure as syntactic 

structure, namely the “base” (the spine of functional categories).  If so, then the Semantic 

Map Connectivity Hypothesis would translate into a statement about how languages vary 

in their underlying syntactic structure. For each language, there is a many-to-one map of 

the universal set of categories onto the language-particular set, preserving the relevant 

hierarchical relations (if C1 and C2 are distinct categories in some language, and C1 > C2, 

                                                
is ruled out, reading Cinque’s remarks quoted in the text as agreeing with this.  On the other hand, variable 
extent of projection (of a fixed structure) is a matter I leave open, beyond the schematic remarks here and 
in Chapter 4.    
3 Note that, insofar as agreement nodes are not a part of the underlying universal structure, we can make 
intuitive sense of the “parasitic” nature of Agreement: having no innately-specified content, they must 
acquire their content through other means (by copying features from some appropriate nearby source).  
These comments do not extend to negation, of course. 
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then for each Ci, Cj categories from the universal structure mapped into C1 and C2, 

respectively, Ci > Cj).  This is in effect an extension of the variation admitted above with 

respect to agreement and negation, whereby structures vary not just at the top, so to speak 

(in their extent of projection), but also vary in internal structure.   

 

3.2.3 Consideration of variation in this work 

In Chapter 4, I consider at least the first kind of variation, suggesting that differences in 

movement relate to more or less extended projections. I consider this kind of variation at 

a cross-linguistic level, suggesting an account of the connection between rich agreement 

and movement in these terms (for example with respect to the presence of agreement and 

the status of P as a postposition or a preposition, taken to reflect movement of its nominal 

complement or not, respectively). This kind of structural variation can also hold within a 

single language, as for Object Shift, which I claim to reflect whether or not the syntactic 

layer of nominal phrases associated with definiteness is projected or not; and for the 

different landing sites of different kinds of nominals, e.g strong vs. weak pronouns 

(Cardinaletti 2004).  See that chapter for details. 

  However, I set aside “internal” variation, for example with respect to negation and 

agreement.  This is largely a methodological choice, as ignoring this kind of variation 

leads to a simpler mathematical investigation. In future work, I hope to return to this 

issue; for now, I merely note that strong predictions can be derived about how differences 

in structure should correlate with differences in patterns of movement. 
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3.2.4 Interim summary: Assumptions about structure adopted in this work 
 
For concreteness, in what follows, I tentatively adopt the assumptions below, in part 

because they afford a convenient and restrictive idealization for the present investigation.  

Assumptions (a)-(d) follow Cinque (1999) and Kayne (1994); assumption (e) aligns with 

phrasal movement analyses of supposed head movement cited above. 

a) There is a single, universal hierarchy of syntactic categories.  

b) This structure is identical across languages and expressions, up to variable extent 

of projection.  

c) This structure, without movement, would be linearized in a consistent highest-left 

order (Kayne 1994), what I will call the base order. 

d) Any deviations from the base order are derived by leftward movement.  

e) Movement may not affect single terminals; apparent cases of head movement 

reflect one or both of the following cases: (i) the ‘head’ has an articulated internal 

syntactic structure of several terminals, or (ii) the element in question has been 

rearranged as part of a phrasal movement.  

 

3.3  Cyclic Interpretation 

The ideas developed below (especially, that movement serves to reduce c-command 

relations) depend on a certain hypothesis about the relationship between syntax and the 

interpretive interfaces that “read” the syntactic form as instructions for computing 

meanings and pronouncing sentences. In particular, for the claims advanced here to go 

through, there must be “levels of representation”, i.e. constrained bottlenecks of access to 
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the syntactic derivation by the interpretive interfaces. This is fairly standard (for a recent 

articulation, see Chomsky’s (2000 et seq) theory of phases), but it should be noted that 

some authors have advanced proposals that give interpretive access to the derivation 

directly (see for example Epstein et al 1998).  

  What is at issue is whether interpretation proceeds in lockstep with each step of the 

derivation, or whether derivations proceed for non-trivial stretches before periodically 

handing off a partial representation. Only in the latter case, where interpretation reads the 

results of a derivation, does movement as tree-balancing appear sensible. 

  To draw this out as clearly as possible, take a simple case of movement, which by 

hypothesis reduces c-command relations in the post-movement as compared to the pre-

movement tree. If the transformed structure is what is “seen” by the interpretive 

components, then its reduced c-command total can be of benefit: c-command appears to 

describe the pathways that are “read” by interpretive processes, so presenting fewer and 

shorter such relations simplifies interpretation. If, however, interpretation proceeds in 

lockstep with the derivation, the same movement will not be of benefit. In effect, the 

“reward” for movement consists of erasing c-command into the lower copy of the chain 

(for some processes at least), but if each step is interpreted, the cost of c-command into 

the lower copy has already been incurred.4 

 

                                                
4 Conceivably, there could still be a benefit to movement in a lockstep-interpretation scenario: it shortens c-
command relations into the moved object from higher up the tree. In effect, it can serve as a way to “bump 
to the top of the list” an item that will enter into further computation. However, that in itself is not 
sufficient to motivate the short steps of movement, because those short movements themselves require 
substantive search relations to implement. It is not at all clear that just searching once, along a longer 
pathway, from the higher position is any worse than multiple short searches. 
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3.3.1  On copies  

At first blush, there might seem to be a tension between the ideas here and the widely 

adopted copy theory of movement (Chomsky 1995b, Nunes 1995, Bošković 2001, among 

others). If movement is literally copying, within narrow syntax such an operation should 

be ruled out for the very concerns sketched here: it always increases the number of 

vertical relations, making “worse” trees. However, there is ample evidence that these 

vertical relations matter not just within syntax (say, for probe-goal relations), but also in 

the cyclic mapping to the interfaces. What is important is that, with respect to 

interpretation at the interface, multiple copies generally collapse onto a single location. 

To take one clear example, only one copy of a moved item is linearized (moreover, the 

highest copy, a fact which is also directly predicted here). Much the same seems to be 

true for semantic interpretation as well: 

 “Although chains have been used to account for various processes 
involving scope and binding, particularly in the context of reconstruction, 
it is, to my knowledge, never the case that multiple occurrences of a given 
element are interpreted. The use of chains on the meaning side amounts to 
allowing different portions of an element to be interpreted in different 
positions as in reconstruction effects (e.g., the operator part of a wh-word 
is interpreted in SpecCP, but its restriction is interpreted in a lower, 
‘reconstructed’ position…)” (Boeckx 2008:47) 

Consider operator-variable chains like that postulated in movement of wh-phrases 

(Chomsky 1986): the point is that even though parts of the phrase may be distributed over 

distinct chain positions, each part is pronounced and interpreted only once. 

(3) Which man did you see [which man]?  PF 

(4) [Which man] did you see [which man]?  LF 
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In fact, the present account makes predictions about which copies in a chain should be 

pronounced. Now, economy conditions of a very general sort militate against 

interpretation of every occurrence in a chain: 

 “Failure to pronounce all but one occurrence follows from third-factor 
considerations of efficient computation, since it reduces the burden of 
repeated application of the rules that transform internal structures to 
phonetic form – a heavy burden when we consider real cases.” (Chomsky 
2009: 28) 
 

However, that motivates only the fact that a single copy is pronounced; it says nothing 

about why it is usually the highest copy in a chain that is pronounced.5  On the present 

account, that fact falls out as well, and for the same reason: pronouncing the copy (of a 

sufficiently large object) in the highest occurrence usually minimizes the total number of 

c-command and dominance relations (compared to other choices of copy to pronounce), 

here postulated to be another important aspect of “the heavy burden” of realization at the 

interfaces. 

  Recall the concerns of Yngve (1960), reviewed in Chapter 1. In the absence of 

other factors, if the choice is to be made by considerations of efficient computation, 

explicitly rooted in the mapping to a surface form, we might expect that Yngve’s “save 

the hardest for last” would decide the issue. If only one copy is to be pronounced, it 

should, all else equal, be the deepest, rightmost one, as that choice least taxes memory 

resources. Instead, it is consistently the highest, furthest left copy in a chain that is 

pronounced; the present account allows us to understand this curious fact. 

                                                
5 Nunes (1995) constructs a Minimalist explanation for pronouncing the highest copy in a chain, in terms of 
economy and/or convergence. He argues that lower copies contain more unreadable “junk” in the form of 
unchecked features, which must either be deleted (creating “extra work” at the interface) or cause the 
derivation to crash. 
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3.3.2 Linearization 

It is quite straightforward to find conceptual motivation for economy of command in 

terms of linearization. As is particularly clear, what is relevant for linearization is the 

structure produced by movement, by hypothesis one transformed into a bushier structure 

(with fewer c-command relations). In other words, movement is overt; elements get 

pronounced in the position where movement has deposited them. According to Kayne’s 

(1994) Linear Correspondence Axiom, linear order is read from (asymmetric) c-

command relations. Thus, I will argue, a bushier tree minimizes the work of “reading” a 

linear order from c-command relations. 

  This requires immediate justification. Kayne’s theory is quite literally about 

Antisymmetry, yet the present account supposes that maximally symmetric structure is 

optimal. However, a look at the details shows that there is no contradiction here, and that 

bushier trees create less burden for the antisymmetric computation of linear order. 

  A crucial ingredient to the reconciliation of economy of command and 

Antisymmetry is the opacity of left branches. For Kayne (1994), this property is a 

consequence of defining c-command relations with respect to categories rather than 

segments. Chomsky (1995a) achieves a similar result by limiting c-command to maximal 

categories (phrases), with the effect that phrasal adjuncts (specifiers) c-command the 

object they are merged with, but not vice-versa. Uriagereka (1999) proposes a theory of 

Multiple Spell Out, whereby whenever two complex objects are Merged one or the other 

must be “spelled out” first, frozen into a giant compound (which, with respect to 
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linearization, is treated as a simplex object, and so precedes its sister). The result is that 

the relations relevant to determining linear order in the Merge of two complex objects are 

one-sided. We might say that this splits the tree into multiple independent spines. 

  Assume that something like this is correct. The effect on c-command relations is 

dramatic: by “packing” the elements into a bushy tree, which will undergo linearization 

by multiple spell-out, far fewer c-command relations enter into the computation of linear 

order. The abstract example below makes this explicit; I indicate both the traditional tree 

structure for a bush with 8 terminals, and the structure as visible to linearization with 

Multiple Spell Out. The boxes in the tree on the right indicate complex left branches that 

are opaque to the structures that embed them. There are 34 c-command relations in the 

whole tree, but only 22 that are relevant to antisymmetric linearization. 

(5) Connected tree structure:    Disconnected linearization domains: 

 

  34 c-command relations           22 c-command relations 

Compare this with a spine structure: instead of packaging the tree up into maximally 

mutually opaque substructures, the entire tree is visible, and a c-command relation exists 

between each pair of elements. Far more c-command relations exist in such a structure 

(for eight terminals, there are a total of 56 c-command relations in the spine). 

(6)  
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If determining the linear order of the terminals in the tree involves computation of c-

command relations, as in Kayne (1994), then (given some mechanism to make left 

branches opaque) the task is simpler for bushier trees. Economy of command eases the 

burden for the processes that “read” c-command relations, including linearization.  In the 

next section, I argue that agreement presents a similar picture, in that what matters for 

agreement are the c-command relations that exist after syntactic movement has applied. 

 

3.3.3 Agreement 

Bobaljik (2008) argues that agreement (his concern is subject-verb agreement in 

Germanic) is a post-syntactic operation, sensitive to configurations after movement, 

independent of any additional syntactic licensing relation among agree-er and agreed-

with (the target and controller of agreement). In particular, he defends this claim (his (3)), 

for instances of agreement with a single NP: “The controller of agreement on the finite 

verbal complex (Infl+V) is the highest accessible NP in the domain of Infl + V.” 

(Bobaljik 2008: 296, emphasis in original)   

  Accessibility is determined by m[orphological]-case, itself determined post-

syntactically. Importantly, “an NP need bear no relation to a verb other than satisfying 

morphological accessibility and locality in order to trigger agreement on that verb. This 

contrasts with the proposal in Chomsky (2001) under which agreement is a reflection of 

core-licensing (feature-checking) relations in the syntax.” (Bobaljik 2008: 297) 

  If agreement is fed by movement, then movement can affect the structural 

complexity of the representations involved. In particular, agreement is computed over c-
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command relations as they exist after movement. In general, the fewer and shorter the c-

command relations involved, the simpler the computation. In the next section, I argue that 

similar conclusions hold for at least some instances of binding. 

 

3.3.4 Binding 

Turning next to binding, we can motivate the bias for balanced trees with respect to 

Condition C, especially. Condition C effects are sensitive to c-command relations of 

arbitrary length. Now, Condition C stands out in this regard; the conditions on anaphors 

and pronouns apply strictly within local domains (phases). So, when separated from its 

antecedent by two levels of embedding, a coreferring pronoun is grammatical (indicating 

the distance is beyond the reach of Condition B). 

(7) Hei suspected [CP that they already knew [CP that hei /*Johni was a spy]]. 

These effects extend even into NP Islands (cf Ross 1967), in a way that long-distance wh-

movement cannot.6  That is, movement of a wh-phrase is permitted to escape from an 

embedded CP, but not from an NP, the latter forming an island. 

(8) What did they believe [CP that Sally had witnessed <what>]? 

(9) *What did they believe [NP the claim [CP that Sally had witnessed <what>]]? 

Long-distance extraction itself involves dependencies over c-command pathways, 

unbounded in length but achieved through a series of short intermediate steps, and 

sensitive to islands. Condition C effects, preventing a full NP (John) from being c-

                                                
6 Note that wh-movement cannot access the downstairs position involved in the above example either, an 
instance of the so-called that-trace effect.  
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commanded by a co-referring pronoun at any remove, peer through even NP Island 

boundaries, as illustrated below: 

(10) Hei believed the claim that Sally had loved himi/*Johni. 

This is a relation of considerable scope. It is, moreover, of a peculiar nature, a “nowhere” 

condition on R-expression binding. Rather than positively establishing coreference (or 

not), it enforces a strict ban, a kind of anti-binding that is “active” throughout a sentence 

of multiple phases. But regardless of its peculiar “strength”, and whatever its ultimate 

source, it is clearly syntactic in substance. Specifically, the condition “sees” the syntactic 

relation of c-command. This can be brought out by minimally embedding the coreferring 

pronoun within another NP, from which position it does not c-command the R-

expression. With this minimal adjustment, Condition C effects do not obtain; the full NP 

can appear downstairs: 

(11) [Hisi mother] believed (the claim) that Sally had loved himi/Johni. 

All of this is familiar, and it is not my goal here to make any new contribution to the 

theory or description of binding. Rather, I mean to point out that the conditions of 

binding, as already revealed by decades of intensive research, are such that their 

computation is minimal when applied to bushier trees as opposed to spines. With respect 

to Condition C, in particular, c-command relations spanning the entire tree are “visible”. 

Within a bushier tree, the relevant relations are shorter and fewer in number; from the 

point of view of an arbitrary node in the tree, as much as possible of the rest of the tree is 

hidden, out of the range of c-command. Bushy structure presents a lesser overall burden 
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for search-like hierarchical processes sensitive to c-command relations, including the 

computation underlying Condition C.  

  I have little to say here about Conditions A and B. Certainly reconstruction effects 

indicate that some binding computations “see” lower copies.  

(12) Whoi did they say that Sally had thought <whoi> was already shaving 

himselfi? 

In the example above, the anaphor is bound locally in its domain, apparently from a 

reconstructed position of the moving wh-phrase, indicated in angle brackets. In this case, 

the c-command relation that is relevant is one involving a lower copy of a moved 

element.7  On the other hand, examples like the following indicate that anaphoric binding 

can be fed by movement as well. That is, the anaphor below is bound only after 

movement of who into the matrix clause; it is not bound by this element in its base 

position in the embedded clause (again indicated with angle brackets). 

(13) Whoi seems to himselfi <whoi> to be the clear winner? 

The facts are intricate, and I leave a more careful investigation of binding to future work. 

Condition C at least provides a clear case where economy of command ought to matter, 

in the sense that it appears to “read” c-command relations of extreme length. The burden 

of the computations implicit in (Condition C) binding effects is minimized in bushier 

trees (those with fewer and shorter c-command relations). I have not tried to establish the 

                                                
7 That does not mean, however, that what is relevant is the base position, i.e. the tail of the chain. It is 
possible that the relevant binding takes place at the head of an intermediate chain at the phase level, after 
one or more steps of movement in an embedded CP or vP, but “before” movement carries the moving 
object to its final surface position. This matter of derivational timing of binding relations is an area of 
active research; see for instance Barss (2003) and references therein. Insofar as Binding Conditions A and 
B apply at the phase level, then what is seen is the structure after movement, and binding is established 
over the c-command relations in that structure. 
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same claim for the binding of pronouns and anaphors, noting the complexities involved. 

However, if these are computed at the phase level, then they ought to be sensitive to 

(intermediate) post-movement configurations, where movement (I will argue) produces a 

structure with a sparser scaffolding of c-command relations. In the next section, I 

construct a parallel argument for the assignment of nuclear stress (where dominance 

rather than c-command is the relevant relation). 

 

3.3.5   Nuclear Stress Rule 

We can illustrate how the concerns of economy of command arise in terms of phrasal 

stress, another canonical case of “cyclic interpretation” in the relevant sense. As I show 

below, the Nuclear Stress Rule of Chomsky & Halle (1968) is a simpler computation 

when applied to a Bush as compared to a Spine with an equal number of nodes. This is 

one example of how the structural preference I argue for arises naturally from the kinds 

of long-distance dependencies found in natural language. 

  Phrasal stress is a topic of perennial interest, and it is not my purpose to review the 

vast literature here (see Kratzer & Selkirk 2007 for a recent view). Instead, I focus on a 

familiar, if somewhat dated description of the phenomenon; the goal is simply to get a 

feeling for how the structural difference at issue is important for linguistic conditions.  

  The basic idea is that stress at the phrasal level closely tracks syntactic structure, 

with stress computed cyclically (Chomsky & Halle 1968, Bresnan 1971, 1972, Cinque 

1993). This cyclic computation involves long-distance hierarchical relations of a sort (in 

this case, described in terms of dominance relations, rather than c-command relations). 
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As I will show, for a tree of a fixed number of nodes, computing the phrasal stress of a 

Bush structure involves fewer operations than computing the phrasal stress of a Spine 

with the same number of nodes. This is one example of what I claim to be a widespread 

pattern: the computations of natural language are governed by a natural principle of 

economy of command. The kinds of computations we find in natural language (in this 

case, the reading of hierarchy as phrasal stress contour) are such that the burden their 

computation induces is least for a maximally balanced, shallow tree. 

  Consider the details of phrasal stress assignment according to Chomsky & Halle’s 

(1968) Nuclear Stress Rule. Items come with default 1 stress, and are cyclically 

“demoted” in an inside-out computation, from most to least-embedded. The simple 

derivation below illustrates. Here, the lexical items are entirely abstract; I indicate only 

their stress level. 1 is highest stress; then 2, 3, etc. Where demotion of stress occurs, I 

indicate the affected element in bold. 

(14)  [1 1]:  2 1  Starting with two elements (initially 1s), one is demoted (to a 2). 

    [1 [2 1]]: 2 3 1  Another element is added; two stress demotions occur. 

    [1 [ 2 3 1]]: 2 3 4 1 Another element is added, and three demotions occur. 

In the diagrams below, I explicitly count the number of “demotion”/stress adjustment 

steps. If stress assignment is operationalized as Chomsky & Halle envision it, this 

provides a measure of the complexity of the computation of phrasal stress; each demotion 

represents an operation of accessing a memory location storing the stress level on an 

individual item, and rewriting its contents. Each node is annotated with the stress contour 

as computed up to that point in the derivation, with stress levels adjusted at that level in 
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bold (e.g., each terminal is a 1; the first pairing produces 2 1 as the stress on the first 

element is “demoted”, etc.). 

(15) a. 2 3 4 1                         b.   3 2 3 1                        
 
    1          2 3 1                                2 1    2 1 
 
        1          2 1                  1            1        1            1 
 
       1       1   
  6 total stress adjustments     5 total stress adjustments 
 
The difference is real, but hardly dramatic for such small pieces of structure. Let us 

examine how the totals diverge for larger trees: 

(16) a. 2 3 4 5 6 7 8 1                     b.      4 3 4 2 4 3 4 1                        
 
    1    2 3 4 5 6 7 1                            3 2 3 1         3 2 3 1 
 
       1    2 3 4 5 6 1              2 1       2 1      2 1           2 1 
 
       1     2 3 4 5 1      1            1        1            1  1            1        1            1 
   
           1     2 3 4 1 
 
           1   2 3 1 
 
              1       2 1 
 
             1          1 
  28 total stress adjustments        17 total stress adjustments 
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Here, the worst case involves more than 60% more operations (of over-writing the stress 

level on individual lexical items stored in memory). Thus, the application of the Nuclear 

Stress Rule involves less computational “action” for bushier trees than for more right-

branching ones.8,9 

 

3.4. Conclusions 

In this chapter, I have laid out the theoretical commitments that underpin the rest of this 

work.  I discussed the cartographic project, whose vision of a richly articulated and nearly 

uniform syntactic structure for all languages I adopt.  I discussed two kinds of variation in 

this structure (the extent of projection, and the variability of agreement and negation).  

The first kind of variation will be an important element in the next chapter, where I will 

argue that differences in movement within and across languages can in part be reduced to 

this variation, in conjunction with the view that movement is a mechanism to reduce the 

number of c-command relations in syntactic representations. 

                                                
8 What about more modern metrical grid theories (Liberman 1975, Halle & Vergnaud 1987)?  In such cases 
a preference for bushier over spindlier trees is harder to motivate in terms of simplifying stress assignment, 
since the number of operations of “project a metrical head” is just equal to the number of non-terminal 
nodes, hence identical for any binary-branching arrangement of a fixed number of terminals. But notice that 
metrical grid theories do not directly provide output stress levels in the way that the NSR above does. That 
is, the proper stress level on an individual output item can simply be read directly off the representation 
produced by Chomsky & Halle’s NSR (e.g., main stress is a “1”, in any context). In metrical grid theories, 
one finds, locally, only information on relative prominence – grid marks projected on a level higher than 
immediate neighbors, or not. Some further computation is required to “translate” such a representation into 
fully-specified instructions for articulation. In particular, it appears, as an empirical matter, that a main 
stress is a main stress, regardless of the absolute size of the domain it occurs in (a 1 is a 1, so to speak), but 
that may be a stack of two metrical grid marks, or eight; local inspection of the metrical grid form yields 
only the local shape of the stress contour, which must be “normalized” to actual stress levels by a global 
computation. To put it simply, actual pronunciation requires absolute prominence, not just relative 
prominence. If that normalization procedure is cyclic in the desired sense, then the preference for bushier 
tree forms would again hold.  
9 For the claim that phrasal stress reflects surface (i.e. post-movement) configurations—obviously a key 
ingredient in using considerations of the complexity of the computation of phrasal stress to motivate 
movement—see especially Cinque (1993). 
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  I claimed that for many of the linguistic relations that depend on c-command, the c-

command relations that matter are those that exist after movement, in cyclic 

interpretation at the interfaces.  I discussed the copy theory of movement, and how it 

relates to present concerns (even noting that the general preference for the highest copy in 

the chain to be interpreted can be rationalized in terms of economy of command). I 

considered linearization, agreement, binding, and nuclear stress, arguing that these 

computations are fed by movement, and are simpler when applied to structures with 

fewer c-command relations (i.e., bushier trees).10 

  This conception of cyclic interpretation, wherein only the highest copy in the chain 

formed by movement is “visible” to c-command based interpretation, forms the basis for 

the next two chapters. In chapter 4, I explore how we can explain numerous empirical 

properties of movement in terms of an understanding of it as a mechanism to reduce c-

command relations.  In chapter 5, I further develop this view of movement into an 

analysis of word order in DPs.  

 
 
 

                                                
10 I have limited the discussion to these four kinds of c-command or dominance-based computations. 
However, it is clear that the argument could be extended to include at least some cases of scope, as well as 
perhaps other phenomena (such as Case).  Scope is another linguistic relation that tracks over c-command 
relations; in particular, element α takes scope over another element β if α c-commands β (May 1985).  This 
suggests that interpreting scope relations involves “reading” c-command relations; again, this is arguably a 
simpler process in a tree with fewer and shorter c-command relations.  The facts are complicated by the 
possibility of reconstruction (as with binding, see above), and cross-linguistic differences (e.g., some 
languages like Hungarian are described as “surface scope” languages, while English and others have scope 
relations involving covert LF movement and/or reconstruction). I leave consideration of the complexities of 
scope to future work. 
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CHAPTER 4: 
MOVEMENT AS TREE-BALANCING 

4.0 Introduction 

One of the enduring puzzles of human language is the ubiquitous property of syntactic 

movement. This pervasive feature of language seems particularly strange in light of the 

hypothesis that the computation of syntactic form is perfect or optimal in some sense (the 

Minimalist thesis of Chomsky 1995b et seq). On the face of it, movement is an “extra” 

operation, over and above what is required to create the basic phrase structure in which it 

is found. The mystery only deepens when we consider the structure-preserving nature of 

movement (Emonds 1970): movement does not really extend the phrase structural 

possibilities at all. 

  Moreover, differences in patterns of displacement are one of the central loci of 

language variation. Indeed, for Kayne (1994), and subsequent work in cartography 

(Cinque 1999, 2002, Rizzi 2004, Belletti 2004, among many others), movement is the 

sole source of cross-linguistic variation in word order (up to (non-) pronunciation). And it 

is striking that all languages apparently have displacement in some form or another: the 

phenomenon appears in widely varying forms, but is nevertheless universal. We would 

like to know why.  

  Chomsky (2000) provides a reason to expect movement, in the form of Internal 

Merge. As he argues, the simplest assumptions about Merge make Internal Merge a 

possibility (with further details, like selecting which copy in a chain to interpret, left to 

other principles). But, once enabled by Internal Merge, where and why should movement 

actually occur?   
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  In this chapter, I propose that syntactic movement is a mechanism for reducing the 

number of c-command and dominance relations in interface forms. In other words, 

movement exists to balance trees. This is orthogonal to familiar Minimalist explanations 

of movement in terms of licensing and feature-checking (discussed only briefly below), 

but nevertheless the intuition fits squarely within the Minimalist paradigm. Here, 

movement is not seen as a “Last Resort” (cf Chomsky 1986); rather, it is directly part of 

an optimal structural solution to conditions of efficient computation.  

  The picture that emerges from these concerns alone (i.e., minimizing c-command 

and dominance) aligns rather well with current descriptions of natural language 

displacement. Optimistically, these concerns alone might go a long way towards 

achieving an empirically accurate description of where movement can and cannot occur. 

  Note, however, that the predictions made here are highly abstract, and we must be 

extremely cautious in thinking about how the concerns here could play out in the 

cognitive structures implicated in the multifactorial and profoundly complicated 

phenomena of real human language. Finding a method to evaluate the match or mismatch 

between a model incorporating the present concerns and empirical observables is the 

most meaningful and serious evaluation of this work; for one step in this direction, see 

Chapter 5.1 Syntactic movement is a dauntingly vast empirical topic, and I cannot hope to 

demonstrate convincingly that all movement phenomena, in all languages, can 

definitively be accounted for in these terms. The goal of this chapter is to establish a 
                                                
1 The very austerity of the account is its primary weakness. That is, the predictions are framed in terms of 
undecorated tree structure; there is no direct role for the identity of individual heads. Then the task is to 
independently identify the underlying hierarchy of heads, as Cinque (1999) has done for the adverb space, 
and see if this hierarchy, realized as a syntactic structure, is such as to motivate the movements that are 
cross-linguistically instantiated for the elements of that hierarchy. See Chapter 5 for extensive discussion. 
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modicum of plausibility for the idea, in a handful of core cases. The next chapter 

develops a detailed application of this analysis to word order within nominals, with an 

eye to providing more rigorous testing of the analysis. 

  This chapter is organized as follows: In section 4.1, I outline some of the previous 

attempts at explaining movement. In section 4.2, I look at the question of the effect of 

movement on syntactic structures. In section 4.3, I state the Fundamental Movement 

Condition, an algebraic expression of the conditions under which movement reduces the 

number of c-command relations in a tree. The main thesis to be explored in this chapter 

(and the next) is that this condition governs syntactic movement: movement is allowed 

only if it reduces the number of c-command relations in the tree. 

  In sections 4.4 and 4.5, I point out two core predictions that follow from the 

Fundamental Movement Condition: a form of Anti-locality, and a size threshold effect. 

To put it simply, if movement is “for” tree-balancing, then it cannot be too local, nor it 

can it move too little material. This derives an empirically well-motivated ban on 

movement from complement to specifier of the same phrase, and a more controversial but 

not unprecedented ban on head movement. In either case, the restrictions are a matter of 

geometry, a condition on the configuration of nodes rather than their contents. Especially 

with respect to size threshold effects, I explore the consequences for understanding 

movement phenomena that have previously been treated in terms of requirements on 

interpretation (e.g., Object Shift), suggesting that interpretation is a byproduct of 

narrowly syntactic principles. 
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 I turn in section 4.6 to a prediction about island effects. We predict that particularly 

well-balanced portions of the tree should act as islands. In particular, in the case where a 

mother node dominates two equal-sized daughter nodes (a point of symmetry), we predict 

that the daughter nodes cannot move individually. I argue that this provides an 

explanation for the Coordinate Structure Constraint of Ross (1967); however, it conflicts 

with some recent treatments of small clauses, where it is argued that movement is 

obligatory to destroy a point of symmetry (see especially Moro 2000). I discuss the issues 

that arise, and a possible solution in terms of predicate phrases (PredPs). 

  In section 4.7, I turn to an extended discussion of so-called roll-up movement, 

focusing on the Malagasy language. As I discuss there, this pattern of extremely local 

iterated movement, so problematic for interpretation-based accounts of movement, falls 

out readily from the hypothesis that movement is a matter of balancing trees. 

  In section 4.8, I consider a handful of types of movement predicted by this account, 

and how they behave under iteration. These include an analogue of roll-up movement, 

which I show to be subject to a form of positive feedback (driving each iteration more 

strongly than the last); an extremely local Spec-to-Spec movement, subject to negative 

feedback; and (relatively) long-distance A-bar-type movement to the edge of phases, 

showing that it achieves a stable equilibrium (each step of movement is driven as strongly 

as the last). I consider also feeding/bleeding interactions between the various types of 

movement. Section 4.9 concludes the chapter. 
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4.1  Previous treatment of syntactic movement 

 A step in a derivation is legitimate only if it is necessary for convergence. 

(Chomsky 1995b: 201). 

  Chomsky (1986) proposed to view movement as a “Last Resort”, forbidden unless 

necessary, an idea that remains enormously influential. That is one straightforward way 

of addressing the seemingly wasteful nature of movement: whatever its cost, movement 

is expected if the derivation would fail to converge without it. Pursuing this intuition, 

much recent work adopts the hypothesis that movement is a matter of licensing (feature-

checking). The empirical burden for such a claim is then to identify the lexical features 

involved in driving movement. To a certain extent, this has proven a fruitful line of 

attack, especially with respect to movement linked to Case and/or agreement; the 

working hypothesis in that project is that morphology (possibly abstract, i.e. null) is to 

blame for movement. This fits in a pleasingly natural way with Borer’s (1984) suggestion 

that syntactic variation among languages reduces to variation in the properties of 

individual lexical items.  

  A related hypothesis is that movement exists to enhance the expressive power of 

natural language. For instance, in recent work Chomsky has referred to the role of a 

“duality of semantics” in (certain instances of) movement (see for example Chomsky 

2008: 140-141), the idea being that movement creates otherwise-unavailable 

interpretations (topic/focus, etc.; basically, discourse-informational effects, while core 

licensing relations – the domain of theta theory – is the province of External Merge). In 
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this case, movement is still seen as a matter of licensing, broadly speaking – in this case, 

of interpretations, not of lexical features.2   

  At the same time, a body of research following Kayne (1994) posits a great deal 

more movement in natural language than previously supposed. One of the strong 

predictions of Kayne’s antisymmetry is rigid specifier-head-complement order. As a 

consequence, finding, say, complement-head order indicates that some movement has 

applied to disrupt the expected head-complement order. The so-called cartographic 

project (see Cinque 1994, Rizzi 1997, Cinque 1999, and much subsequent work) takes 

this one step further, supposing that the inventory and hierarchy of lexical items is also 

universal; in the limit, every category is present in every sentence of every language. 

Taken together with some version of antisymmetry, this leads to the identification of even 

more movements in deriving the surface orders of natural languages.  

  However, this radical proliferation of inferred movements has created considerable 

problems for licensing accounts of movement (of either stripe, lexical or interpretational). 

That is, it is generally the case that overt morphological differences between languages 

do not match, in number or richness, the proposed differences in movement patterns. This 

is especially so for analyses positing so-called roll-up or snowballing movement, where a 

large number of quite-local movements are identified, often only on the basis of rather 

subtle facts about, say, adverb ordering. Thus, if lexical feature-checking is to blame, the 

relevant features are at best obscure; moreover, the feature-based point of view offers 

                                                
2 Note, though, that this approach goes hand in hand with Chomsky’s (2001) proposal that movement is 
“Internal Merge”, freely available in a system based on Merge. This represents almost a return to the 
“Move alpha” conception of movement of Government and Binding theory; movement is not an 
imperfection used only as a last resort; instead, “its absence would be an imperfection.” (Chomsky 2001: 8) 
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little insight into the stringing together of multiple movements that is the hallmark of roll-

up movement.3  On the other hand, the view that movement exists to license 

interpretations would seem to face even greater difficulties in accounting for the cross-

linguistic differences in movement claimed within this body of work. To put it simply, a 

VOS sentence (say, in Malagasy) means pretty much what its SVO equivalent (say, in 

English) means.4  What interpretational drive, then, can there be for the complicated 

series of movements deriving the Malagasy surface form?  Moreover, pointing to 

interpretation as the driving force in movement would, in light of the massive variation in 

movement patterns, indicate massive variation in interpretation as well. That violates the 

intuition of semantic uniformity: “In the absence of compelling evidence to the contrary, 

assume languages to be uniform, with variety restricted to easily detectable properties of 

utterances.” (Chomsky 2001: 2)  Particularly with respect to logical form (cf May 1985), 

it has often been claimed that there is very little variation among languages; semantic 

properties then seem an unlikely source of the apparently radical differences in 

movement among languages.  

  While the checking of features on lexical items provides a possible mechanism for 

driving movement, it would be rather unsatisfying if explanation went no deeper than 
                                                
3  One exception in this regard is the Final-Over-Final Constraint (FOFC) of Biberauer, Holmberg, & 
Roberts (2007). They claim that head-finality is ‘inherited’ from a phase head via agreement, and use that 
to account for certain ordering facts. See that work for details. Insofar as it is correct, they provide a 
compelling explanation for it. However, their account appears to be incompatible with the DP ordering 
facts examined in Chapter 5 of the present work.  
4 This is not quite true. For example, the external argument in Malagasy has rather different properties than 
English subjects. In the literature on this language (and related Philippine-type Austronesian languages), 
this position is described as the “trigger” rather than the subject, and appears to have a different 
information-structural status (Pearson 2007). While that fact might be taken as encouraging, the empirical 
challenge in associating differences in movement with differences in interpretation remains to motivate 
each step of movement – particularly difficult for the series of roll-up movements identified within the vP. 
See Rackowski (1998), Rackowski & Travis (2000) for discussion. 
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this, because the relevant movement-driving features are apparently subject to significant 

cross-linguistic variation. If explanation stops with features as primitives, we are left with 

a picture in which patterns of displacement are brute accidents of the lexicon.  

  All of this is not to deny that lexical variation is real, and perhaps an important 

contributor to cross-linguistic variation in syntactic properties. But perhaps we can 

explain movement-inducing lexical features themselves, as organized (synchronically and 

diachronically) by computational biases favoring certain kinds of displacement patterns. 

That could offer principled explanation for features themselves, and predictions about 

their distribution and stability.  

  In what follows, I propose a very different way of viewing movement. Rather than 

viewing movement as strictly necessary (as it is in the standard feature-checking view), I 

propose that the function of movement is to reduce the number of c-command and 

dominance relations in the syntactic representation. Thus, movement, despite the inherent 

cost of an additional Merge operation, nevertheless serves to simplify the syntactic 

computation. This makes movement a decidedly natural thing to find in human language. 

Moreover, since what is at stake is nothing more than tree geometry, very precise 

predictions can be derived and tested against known facts.  

  The view developed in this chapter bears rather directly on the autonomy of the 

syntax, and the relationship between syntactic operations and semantic interpretation. The 

present work fits well with the perspective of Hinzen (2011), who questions the idea that 

“what the syntax qua computational system of language produces has to match what is 
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independently there, in the hypothesized pre-linguistic conceptual – intentional (CI) 

systems. The semantics, in short, requires, and the syntax satisfies.” (Hinzen 2011: 423) 

  In light of the program to reduce what is attributed to language-specific capacities, 

and promote explanations in terms of domain-general principles (the third factor), Hinzen 

suggests the following alternative view of the relationship between syntax and semantics: 

 “We might think of this program as beginning from minimal codes 
(structures generated by Merge, say) that are as such entirely unspecified 
for the output achieved by them. The most minimal principles prove rich 
enough. This program is not consistent with the idea of setting an output 
that is to be matched. Indeed, as I will here contend, there is no 
independent task or output to be matched; the task accomplished by 
grammar arises with the grammar itself: syntax formats human thought 
rather than expressing it […] Syntax, therefore, is not task-specific either, 
as there was no task before syntax was there. Syntax provides 
underspecified codes.” (Hinzen 2011: 423-424)  
 

If movement is, at its root, a matter of tree-balancing, then it is not driven, ultimately, by 

the need to create interpretations, nor to check formal features. This is not to deny that 

movement has semantic consequences; likewise, there is reason to temper this strong 

view of features somewhat. I will suggest below that features offer a simplifying heuristic 

to implement movement “blindly”, but that their distribution is itself determined by 

whether or not the movements they trigger help balance the tree. In the next section, I 

illustrate how syntactic movement might serve as a tree-balancing mechanism. 

 

4.2  What does movement do? 

The point of departure for this chapter is the claim that c-command and dominance 

relations “count” primarily in interface representations. That is, the relevant c-command 

and dominance-based phenomena that implicate costly computation are sensitive to the 
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configurations produced after movement.  If so, then movement can help, by easing the 

burden of computing over interface forms. In effect, movement has the effect of 

shrinking the search space for the (c-command/dominance-based) mapping procedures 

that apply post-movement.  

  Insofar as the computations that “read” c-command relations see post-movement 

configurations, movement that transforms a configuration with many c-command and 

dominance relations into a configuration with fewer such relations eases the burden for 

these interface mapping computations. So long as only the displaced surface position is 

detected by these processes, movements may serve to transform a costly configuration 

into a more optimal arrangement, as in the transformation of (1a) into (1b) by movement 

(leaving a ‘trace’, marked with t).5 

1) a.         b.             
       A                                    G              
 
 a          B                               D                    A               
 
       b       C               d          E            a          B               
 
    c      D                           e          F                  b          C      
 
           d         E             f          g           c           t 
 
       e          F 
 Σ = 42          Σ = 38 
             f          g 
 
 

                                                
5 For the calculations here, I assume that ‘traces’ are effectively dummy terminals, participating normally in 
c-command relations. If traces are ‘invisible’ to c-command or dominance, then movement is even more 
easily motivated, and slightly different conditions would apply.  
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  As indicated above, in the pre-movement configuration the number of c-command 

relations sums to 42; after movement, the sum of c-command relations is 38. It is the 

thesis of this chapter that syntactic movement can be explained as a mechanism to 

achieve this kind of reduction. 

  In the remainder of this chapter, I explore the mathematical fundamentals of a 

theory of syntactic movement as a mechanism for tree-balancing. The principle theme is 

that structure determines movement; the geometry of a syntactic tree dictates what 

movements are possible or impossible, and which are “better” than others.  

 

4.3 The Fundamental Movement Condition 

Below, I derive the conditions under which movement of a single category α balances the 

tree, i.e reduces the number of c-command and dominance relations present. For the 

purposes of these calculations, I assume that lower copies collapse into a single terminal 

position, effectively a “trace”, as in earlier formulations of generative grammar. Note that 

this is equivalent to the structure proposed in the hybrid theory of dependencies of Koster 

(2007).6   

  In the diagrams below, each category is labeled with a Greek letter, and has a pair 

of numbers accompanying it (e.g., (a, i) for α). The first number is the number of nodes 

in that category, while the second is the number of c-command (or containment) relations 

                                                
6 Koster argues against the internal Merge conception of movement, in part on the basis of Emonds’ (1970) 
notion of structure preservation. Koster proposes instead to fold traces into a general theory of  “‘empty’ 
elements, which I take as incomplete lexical elements, with categorical features, but without the full range 
of identifying semantic and phonetic features.”(Koster 2007:193)  In other words, Koster assumes the 
bottom of a chain is occupied by a single terminal, consistent with (8). 
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internal to that category. The category β is also annotated with the number s, indicating 

its depth (the number of nodes along its spine, from its root to the root node of α, 

inclusive). C-command (equivalently, dominance) totals for each configuration can be 

expressed in terms of these variables, yielding an inequality that expresses the minimal 

structural condition for displacement to reduce the total number of c-command 

(equivalently, dominance) relations present in the tree.7  

2)            a (total nodes)   = 5 
       α         i (internal CRs)  = 6 
     

An arbitrary category α contains a nodes and i internal CRs. Supposing that α happened 

to represent the tree to its right, here a = 5 and i = 6. In some cases we will be concerned 

with the spinal depth of categories; for α above this is 3. 

3)                a (nodes in α) = 5 
             β      b (nodes in β) = 5 
      β             i (CRs in α) = 6 
                 j (CRs in β)  = 6 
        α          α   s (depth of β) = 3 
                 ∑ (total CRs) = 20 
 
 
I will depict hierarchies of partitions as above. Note that, by convention, the partitions 

overlap (α and β above share a node). We can readily write an expression for the sum of 

                                                
7 The notational conventions used here are as follows: 
 CRs   c-command (equivalently, irreflexive containment) relations 
 α, β, γ,… label partitions of the tree (i.e. subtrees).  
 a,b,c,… are the total number of nodes in these tree partitions. 
 i, j, k,… are the total number of CRs (c-command, or equivalently containment,        
    relations) internal to the partitions. 
 s, t, u,…  are the spinal depths of non-bottom partitions, i.e. the number of nodes within a partition   
    from its root to the root of the lower partition, including the shared node itself in this count. 
 ∑1,2,3,… are the sum of CRs (c-command or containment relations) in a composite  
    figure, expressed in terms of the a-, i-, and s-series variables above. 
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CRs in the whole figure as a function of the properties of the partitions α and β; in the 

example under consideration this turns out to be: 

4)  ∑ = (i+j) + (s-1)(a-1) Where i, j, are the CRs internal to α and β; a is the   
         number of nodes in α; and s is the spinal depth of β. 

So, in (3), suppose α and β are as in the example to the right. Here i=j=6, a=5, and s=3, 

so the sum is (6+6) + (3-1)(5-1) = 20.  

  We will be concerned, in what follows, with comparing the total number of c-

command (equivalently, dominance) relations in pre-movement configurations to the 

total number of such relations in post-movement configurations. Below, I give a general 

formula for the total CRs after movement of arbitrary syntactic object α to the edge of β. 

  The following example illustrates my assumptions about movement. I take 

movement to leave a trace (in interface forms);8 equivalently, base-generated “displaced” 

objects are associated with an underspecified terminal in the position of interpretation, a 

representational version of trace theory (cf. Koster 2007).9 

5)                     Variable  Stands for: 
              β                     a  nodes in α 
                     i  CRs in α 
                            α                                          α           β     b  nodes in β 
                        j  CRs in β 
                     s  spinal depth of β 

                                                
8 To repeat, this is not to deny the conception of movement as Internal Merge (the copy theory of 
movement), within narrow syntax. Here, we are considering the configurations from the point of view of 
interface processes pronouncing/interpreting only the highest copy in a chain, the most typical case (see the 
previous section). 
9 These two treatments (of movement leaving traces, vs. a dummy terminal merged in the base position, 
with the “displaced” category only ever in its surface position) could differ in their predictions with respect 
to successive cyclic movement:  in intermediate positions, we expect to find traces, but perhaps not 
Koster’s place-holders (with consequences, for, say, binding phenomena), a matter I leave aside here.  
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Here again, we can write a general expression for the sum of CRs in the post-movement 

configuration, in terms of the structural properties of the partitions. The correct form 

turns out to be: 

6) ∑ = (i+j) + a + b 

The example below illustrates; here i=j=6; a=b=5, so the sum is (6+6)+5+5 = 22. 

 
7)  

        β 
 
                   α       β 
         α                                t 
 
 
In this tree, movement has resulted in a structure with more, not fewer, CRs.  

  For movement to be motivated by tree-balancing, the post-movement CR sum ∑2 

must be less than the pre-movement CR sum ∑1. This is the sole condition governing 

movement, on this account. 

8) Fundamental Movement Condition (FMC), preliminary version:  

   Move α only if ∑1 > ∑2    

Substituting into (11) the expressions derived above for ∑1 and ∑2, we obtain (after a bit 

of algebra), this more formal version: 

9) Fundamental Movement Condition (FMC):  

   Move α  only if  (a-1)(s-2) > b+1  

  Very roughly, the FMC amounts to saying that the size of the moved category (a), 

times the distance it moves (s), must exceed the size of the non-moving part of the tree 

(b). This constitutes an instantaneous evaluation at the derivational stage at which 
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movement occurs; it might be more appropriate to consider, say, final results of 

movement in a completed phase as the standard for comparison. But the FMC as 

formulated above is the simplest and strongest claim; I choose to pursue this version, 

expecting that it will be easiest to falsify. 

  It is important to note that the FMC is a minimal condition indicating when 

movement might be of benefit (in the sense of creating a post-movement configuration 

with fewer “vertical” – c-command and dominance – relations than the pre-movement 

configuration). In other words, only if the FMC is satisfied could movement possibly be 

of benefit; in practice, of course, that may not be sufficient to motivate movement, with 

presumed additional “costs” (within narrow syntax, under a copy theory of movement, 

and at the level of performance). This gives us a starting point for investigating whether 

tree-balancing is the reason for movement: the more we find that attested movements in 

natural language satisfy the FMC, the more confidence we may have that this is the right 

kind of explanation. But much remains to be worked out for such an account. 

  In the next two sections, I point out two basic predictions that follow from the 

Fundamental Movement Condition derived above. These are a form of anti-locality, 

discussed in 4.4, and a size threshold effect, discussed in 4.5. The overarching theme is 

that structure determines movement; this theme runs throughout the chapter, but finds its 

simplest and clearest form here. 
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4.4  Antilocality 

We can directly derive a form of antilocality from the FMC. Consider the possible values 

for s (recall that this represents the depth of the moving category in the tree). We know 

that the right hand side of the inequality in (9) must be strictly positive, because b is a 

positive integer. If s = 1, we would have a zero value on the left hand side of (9), an 

impossibility. Thus, s must be 2 or greater, ruling out movement of alpha in a 

configuration like (10), where it is immediately dominated by the root. 

10)  
 
                        α                          α 
                               t              
  
This effectively rules out movement of a category from the complement position to the 

(first) specifier position of the same head. A ban on exactly this kind of movement has 

been proposed by a number of authors (Bošković 1997, Abels 2003, Aboh 2004, 

Grohmann 2000, Kayne 2005, Boeckx 2008), on other grounds.10  Here, we derive this 

restriction directly from the structural conditions to which movement is, by hypothesis, a 

response. No conceptual argument is being invoked here (such as the idea that such 

movement could not serve any feature-checking purpose, as the head-complement 

relation is already the maximally local feature-checking configuration). Instead, this 

prediction falls out directly from the FMC. 

                                                
10 The consensus of those works is that complements cannot move to another position within the projection 
of the head that selects them. This is somewhat different in content from the present claim, for which 
projection properties are not considered. For example, the present account would permit movement from 
complement to second specifier, as noted. 
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  How local can movement be, on this conception?  First let us consider a rather 

general case, with structural properties of the sister of alpha left open for now. Then s = 2 

is sufficient for movement to satisfy the FMC: 

11)  
               H 
                                                            α 
        α                        H    
                                                                                              t            
  
If independent conditions on phrase structure permit multiple specifiers (as in the theory 

of Bare Phrase Structure (Chomksy 1995a), but contrary to Kayne (1994)), this means 

that movement from complement of a head to its second (or beyond) specifier ought to be 

permitted:  

12)  
                
                                                                α 
    Spec      H          α      Spec          
                                                                            Spec     H          t            
 
On the other hand, if multiple specifiers or multiple phrasal adjunction is ruled out for 

phrase-structural reasons (as in most versions of Antisymmetry, cf Kayne 1994), then the 

most local kind of movement possible would be from the complement of a phrase XP to 

the specifier of the immediately dominating phrase YP: 

13)  
                
      Y0                                                     α 
     X0          α                              Y0   
                                                                                    X0             t          

If a (the number of nodes in α) is large enough, the present account leads us to expect 

movement to sometimes be as local as this. 
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 Antilocality as described above can offer insight into the correlation between 

agreement on P elements and whether those Ps are prepositions or postpositions. Kayne’s 

Antisymmetry forces us to the conclusion that postpositions arise through movement of 

their nominal complement to the left. It has often been noted that there is a positive 

correlation between a P element displaying agreement with the nominal, and moving it to 

the left. Kayne (1994: 49) observes that postpositional languages may have agreement on 

the P, while prepositional languages never do. Indeed, in Hungarian, a language with 

both prepositions and postpositions, only non-agreeing Ps are prepositions (Marácz 1989: 

326). 

14) a. én-möggött-em 
   I-behind-POSS.1. SG 
       b. *möggött-em        én 
   behind-POSS.1. SG  I 

    ‘behind me’ 
 

15) a. *a   hídon          át 
     the bridge.SUP  over 

  b. át      a     hídon           
    over  the  bridge.SUP  
    ‘over the bridge’  
    (Hornstein et al 2005: 125-126, citing data provided by Anikó Lipták) 
 
Let us suppose that the presence of agreement indicates the presence of an additional 

syntactic position. Then PPs may have either of the following structures: 

16)  
 
         P        P + Agr 
              DP 
                  DP 
 
  The movement facts fall out from tree-balancing in just the right way. The DP 

complement of a bare P cannot move, creating a prepositional structure. On the other 
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hand, with an additional layer of structure hosting agreement, movement of the DP 

complement becomes possible.  

17)  
 
 
       DP             P                              DP        P + Agr 
 
 
Thus, if we interpret the presence of agreement on P elements to indicate the projection 

of additional structure (say, an Agr head not present in the context of non-agreeing P), we 

predict, correctly, that agreeing P can trigger movement of its DP complement while non-

agreeing P cannot.  

  In the next section, I take up another straightforward prediction, of a size threshold 

effect on potential moving categories.  

 

4.5  Size threshold 

Another prediction which falls out directly from the FMC is that head movement as 

such—understood as moving a single terminal node—should never occur.11 It turns out 

that a = 5 (3 terminals) is the minimal condition for movement to satisfy (9). This might 

seem problematic, in light of a rich tradition of head-movement analyses. However, 

‘snowballing’ analyses (see below) can in many cases derive the same morpheme orders 

with XP movement alone (see, for instance, Mahajan 2000, Koopman and Szabolcsi 

2000, and much subsequent work); this work endorses those analyses. 

                                                
11 Note that this does not rule out movement of complexes of heads, though we can exclude movement of 
an object consisting just of a pair of heads, for example the pairing of an acategorial lexical root and a 
category-determining functional head, as proposed by Marantz (1997): [f √]. In this case, a = 3, and we 
have 2(s-1) on the left hand side of the FMC. However, the right hand side is at least 2s.   
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  Five nodes (three terminals), as in (18) below, is the smallest piece of structure 

whose movement can result in a reduction of the number of c-command and dominance 

relations. This is an absolute size threshold; regardless of other details of the tree, nothing 

smaller than this should ever move, if movement obeys the FMC.12   

18)    
 
 
 

 The following diagrams illustrate a minimal context in which movement of (18) achieves 

such a reduction. 

19)               Before movement: CR sum = 42 
 
 
 
 
 
 
 
 
 

20)               After movement: CR sum = 40 
 
 
 
 
 
 
                                t 
 

                                                
12 As Massimo Piatelli-Palmarini points out (p.c.), there is a pleasing convergence between this prediction 
and the topic of X-bar phrase structure, considered elsewhere in this dissertation. The minimal piece of 
movable structure is a treelet matching the X-bar schema of specifier, head, and complement. One wonders 
whether phrases, which for mysterious reasons seem to have a privileged status with respect to various 
syntactic processes, might emerge from structural divisions made by tree-balancing movement. I leave this 
matter for future work. 
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  As should be clear from (9), holding everything else constant, as a (the number of 

nodes in the moving category) is increased, the structural improvement also increases. 

Thus, one of the immediate implications of the explanation for displacement offered here 

is that there should be size threshold effects. That is, holding the rest of the details 

constant but varying the make-up of a category that is a candidate for movement (α in 

(5)), I predict that categories exceeding a certain size threshold will move, while smaller 

categories will stay in place.  

  Consider, in this light, the case of Object Shift in the Germanic languages. The 

basic observation is that definite/specific DPs must escape the VP, while indefinites/non-

specifics stay low. Since Diesing (1992), the account of this fact has been that the latter 

type of nominal must remain in the scope of existential closure. However, it seems to be 

the case that exactly those categories which move have one or more layers of additional 

functional super-structure, such that definites are effectively ‘larger’ than indefinites.13  If 

so, differences in their movement may be a matter of a size threshold effect. 

  This is exactly the kind of threshold effect predicted: holding the rest of the 

structure constant, we find that a small category stays in situ, while a slightly larger 

category in the same configuration undergoes movement. If this is on the right track, it 

suggests a reversal of the direction of explanation. Here, it is not that movement serves 

the needs of interpretation; rather, movement is a blindly structural effect, though with 

                                                
13 However, coordinated DPs—‘twice as big’ as a standard DP, one would think—resist Object Shift 
(Thráinsson 2001). On the face of it, this is exactly counter to what is expected. One way to proceed here is 
to appeal to the internal feature structure of lexical items as effectively syntactic structure ‘counting’ for c-
complexity. Then conjoined DPs would count as ‘small’ if they have less feature structure than their 
individual conjuncts; something like this seems to be true. That is, the features of a conjunction are 
typically less marked than either individual conjunct; following Harley and Ritter (2002), we may take this 
to mean that the relevant feature geometry is truncated. 
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interpretational consequences. This would then be an example of Uriagereka’s idea that it 

is “as if syntax carved the path that interpretation must blindly follow.” (2002:64) 

  However, matters are complicated by a closer look at the facts: in (most) 

Scandinavan languages only pronouns obligatorily undergo Object Shift (OS), while OS 

of full DPs is either optional (as in Icelandic) or ruled out completely (as in the Mainland 

Scandinavian dialects) (Thráinsson 2001). If what is at stake is the application (or not) of 

a single movement of a DP, that would seem to contradict the predictions here: the DP, as 

the larger category, ought to be more strongly driven to move.14 

  I can think of several responses to these facts.15 But one clear way forward is to 

develop a more nuanced view of pronominal structure. While pronouns may be 

phonologically ‘small’, they tend to be maximally rich in phi-features, which are at the 

center of the agreement system, a prototypical (but certainly not the only) linguistic 

computation sensitive to c-command. For example, in English neuter gender appears only 

in the pronominal system (it), as does overt case marking (he/him). In terms of the c-

command computations for agreement, then, regardless of reduced phonological size, 

pronouns are likely to be prominent indeed. This might solve the puzzle of the 

coordinated DPs as well; relative to phi-features, coordinated DPs are generally less 

                                                
14 Thanks to Andrew Carnie for pointing this issue out to me. 
15 For example, one possibility is that the rather simplistic analysis just sketched is incorrect, and in fact 
apparent OS arises through remnant VP movement. Then the larger DPs might be expected to preferentially 
raise to some intermediate specifier position prior to remnant movement, ultimately stranding them low 
(while pronouns, too small to escape on their own from the VP earlier, get carried along for the ride with 
the remnant). Such an analysis, of course, aligns very well with what has come to be known as 
“Holmberg’s generalization”, that OS is contingent on V movement (Holmberg 1986). To put it another 
way, OS does not disrupt VO linear order, which is at least consistent with the sort of remnant movement 
analysis under discussion (but see Pesetsky & Fox 2005 for a very different approach to such facts). Note, 
though, that Scrambling – similar in other ways to OS – is not subject to any such restriction (see 
Thrainsson 2001 for discussion). 
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specified than either of their conjuncts (e.g., for mismatching gender features, the default 

gender is chosen; see fn. 13). 

  Consider in this light the agreement properties in Irish, e.g. in verbs and 

prepositions, as analyzed by McCloskey & Hale (1984): they argue forcefully that null 

pro controls agreement. But the language evinces no agreement with overt DPs.16  On the 

present conception, despite its minimal overt realization, silent ‘little pro’ induces more 

real burden for c-command-based agreement computations than large overt DPs in this 

language. See also the extensive discussion in Cardinaletti & Starke (1999), who argue 

that little pro has all the syntactic and semantic properties of other pronouns. 

  Another apparent counterexample to the predictions made here are clitics, which 

are plausibly “small” categories (smaller than other pronouns, and full DPs) yet typically 

end up farther to the left in the surface structure. In some Scandinavian languages, 

pronouns undergo Object Shift while full DPs do not. On the other hand, exceptionally 

large DPs undergo Heavy NP shift, ending up at the right edge of the noun phrase. On the 

face of it, all of these phenomena go in the wrong direction with respect to the size 

threshold prediction. That is, all else equal, we predict that a large category will move, 

ending up on the left, while a small category will stay in place, ending up on the right. 

  The problem is that we may be misanalyzing the movements involved. If we insist 

that what is at stake is a single movement of the nominal, then the counterexample 

stands. However, it may well be that the apparent movements are not the real movements, 

which might, say, be rearranging the larger verbal structure around the nominals in a way 

                                                
16 This is not quite true; a few dialects allow an overt 3rd person plural subject to co-occur with agreement. 
(McCloskey & Hale 1984) 
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consistent with the present predictions. Well-known analyses of these phenomena assume 

exactly the kind of movements required. Leftward movement analyses of Heavy NP Shift 

include Larson’s (1988, 1990) light predicate raising analysis, or the treatment of the 

phenomenon in Kayne (1994: 71-74) and den Dikken (1995). Kayne (2000) provides the 

following schematic derivation of a heavy NP shift structure, wherein apparent rightward 

movement of a heavy constituent is achieved by the composition of two leftward 

movements: one extracting the heavy nominal, the other moving the remnant verbal 

category. 

21)  … likes the type… too 
   … [the type…]i likes t i too 
   …[likes ti too]j [the type…]i tj     (Kayne 2000: 46) 
 
As for the problematic positioning of clitics farther to the left than other nominals, 

Kayne’s (2002) analysis of clitic doubling exemplifies the kind of higher-order 

reshuffling required for the present account to succeed. The example below illustrates a 

complicated “leapfrogging” that first fronts the doubling constituent containing both the 

clitic and its full DP double, then extracts the latter, finally moving the clitic as part of a 

remnant together with the verbal material to the left again.  

22)  doy un libro [Juan le] 
   [Juan le]i doy un libro ti 
   Juanj [tj le]i doy un libro ti 
   a Juanj [tj le]i doy un libro ti 
   [[tj le]i doy un libro ti]k a Juanj tk  (Kayne 2002: 135, his example 5) 

This pattern of movement, in which the clitic is never moved by itself, is what is required 

to reconcile the present theory with the facts. The crucial point is that surface orders do 

not wear their derivations on their sleeves – what can superficially be described as 
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leftward displacement of one element (e.g., of the clitic in the example above) may arise 

through movements that do not move that element by itself at any point (here, 

movements of first Juan, and then a constituent containing the clitic and verb phrase, 

achieve the superficial leftward displacement of the clitic element le).  

 There is yet another effect we can assimilate to these predictions: the differential 

behavior of “weak” pronouns, analyzed by Cardinaletti as occupying a slightly lower 

subject position. For example, strong pronouns can be separated from the verb by 

parentheticals, while weak pronouns cannot: 

23) John/he (as you know) is a nice guy. 

24) It (*? as you know) costs too much. (Cardinaletti 2004: 137, her 80a-b) 

As Cardinaletti (2004: 138) points out, this is not plausibly the result of a phonological 

constraint. This is brought out strikingly in German, where a single element er ‘he/it’ 

behaves differently based on its interpretation as human or non-human: 

25) Hans/Er (soweit ich weiss) kommt morgen. 
     Hans/he (as far as I know) comes tomorrow 
 

26) Es/Er (soweit ich weiss) kostet zuviel. 
     it/it (as far as I know) costs too much (Cardinaletti 2004: 137, her example 82b) 
In Cardinaletti’s analysis, “weak” pronouns occur in a lower position (AgrSP) than strong 

subjects, which move on to a higher position (SubjP) above the attachment site of 

parentheticals. We can represent this proposal schematically as below: 

27) [SubjP strong subject […parenthetical… [AgrSP weak pronoun […]]…]] 

We may describe the relevant weak pronouns as those lacking the animate and participant 

portion of the phi-feature geometry; by hypothesis, these are then smaller objects. It 
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follows that they should move in fewer instances than larger objects, such as pronouns 

with a richer feature geometry. I repeat below the phi-feature geometry given by Harley 

& Ritter (2002); the nodes missing from the weak pronouns are circled. 

28)  Referring Expression (=Agreement/Pronoun) 
 
               PARTICIPANT                               INDIVIDUATION 
 
      Speaker       Addressee         Minimal      Group      CLASS 
 
                                               Augmented           Animate      Inanimate/Neuter 
 
                                                                        Masc.    Fem. 
(Harley & Ritter 2002: 25) 

If syntactic object α moves in a subset of the instances in which another object β of the 

same type (e.g., nominal) may move, in general we expect α not to move as high in the 

tree as β. That prediction matches well with the movement facts Cardinaletti reports.   

  Finally, consider the effect of constituent size on the distance moved by various 

types of phrases. Take the following different kinds of DPs: indefinite, definite, and 

+wh/Focus, respectively. Note that the smaller the constituent, the less it moves.  

29)  
           indefinite DP: may stay in situ in vP. 
     ϕ 
 

30)  
           definite DP: raises out of VP, escaping existential 
      D      closure (Diesing 1992). 
            ϕ 
 

31)  
           wh DP: raises to Spec, CP (Chomsky 1986). 
                wh 
                       D 
                    ϕ 
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32)  
           focused DP: raises to Spec, CP (Chomsky 1986). 
               Foc 
                          D 
                             ϕ 
 
 
In particular, as the tree grows, a fixed piece of structure will be smaller, relative to the 

whole. In general, we expect a pattern whereby small enough objects are immobile, while 

slightly larger objects in the same position may move a short distance, and larger objects 

can move further still. 

  Summing up, this section has suggested that the different movement possibilities 

for nominal phrases may simply reflect differences in the relative size of those objects, as 

seen from the embedding clause. This view of things predicts that large objects will move 

often and far, smaller objects will move less often or not as far, and small enough objects 

should not move at all. I have sketched how we might apply these ideas to apparently 

semantically motivated movement to the left periphery, such as wh- and focus movement, 

taking such maximal movement to reflect the presence of a maximally projected nominal 

phrase. I argued as well that the movement of strong and weak pronouns to different 

subject positions follows what we predict based on their differing richness of phi-feature 

geometry.  

 

4.6 Islands of symmetry 

Certain kinds of island effects fall out as theorems of tree-balancing; for example, a 

version of the coordinate structure constraint. Consider the case below: 
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33)    γ 

     α        β 

 

Here, a coordination is taken to consist of two equal conjuncts; idealizing, let γ be 

comprised of objects α and β, of equal size (say, a nodes)17. It can be shown that if γ 

cannot move in a certain configuration, neither can α or β.18  In configurations permitting 

movement, the reduction in the number of c-command relations achieved by moving γ is 

always greater than the reductions (if any) achieved by moving α or β. Moving γ is also a 

shorter move than moving either of its daughters. On purely structural grounds then, we 

derive a version of the Coordinate Structure Constraint: moving the full coordination is 

always preferable to moving an individual conjunct. 

34)        δ    |δ| = d; depth (δ) = s 

    γ   |α| = |β| = a; |γ| = 2a+1 

     α         β 

 

We are concerned with comparing two possible movements, once the coordinated 

structure is embedded within a further object δ: movement of the complete coordination 

γ, or movement of a single conjunct (say, α). 
                                                
17 Depending on the structure assumed, a slight imbalance could be introduced by aymmetric structure 
introducing the conjuncts as specifiers and complements of an XP headed by the conjunction; one or the 
other of α or β will be slightly larger. If the conjuncts are large enough, this will hardly matter for blocking 
the movement of the conjuncts, as desired. However, one consequence of this account of the Coordinate 
Structure Constraint is that it should hold only of the full conjuncts themselves; subextraction from within a 
conjunct may still be possible.  
18 If γ cannot move because it is immediately dominated by the root (antilocality), the condition for α or β 
to move is that they must contain more nodes than the unmoving part of the tree (a-1)>(b+1); since they are 
less than half of γ already (|γ| = 2|α| +1), this is impossible.  
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35)  a.    δ           b. 

    γ                     γ                δ 

     α        β                 α                β 

 

The condition for moving γ as diagrammed above is this: 

36)  (2a)(s-2) > d+1 

Now consider moving just a single conjunct (arbitrarily, α) instead. 

37)  a.    δ            b. 

    γ                    α                       δ 

     α         β                                           γ 

                                β 

The condition governing this movement of α is this: 

38)  (a-1)(s-1) > d + a + 2 

To bring out the desired comparison, I introduce the notion of the total reduction induced 

by a movement: this is simply the difference between the number of c-command relations 

in the pre-movement structure and the number of such relations in the post-movement 

structure (if the movement satisfies the FMC, this difference is positive). Let us label this 

quantity Δ, for a general movement. For movement of the full coordination γ, the 

difference is Δ(γ); for movement of α, we have Δ(α). 

39) Δ(γ) = (2a)(s – 2) – d – 1 

40) Δ(α) = (a – 1)(s – 2) – d – 3 
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We can then express the difference Δ(γ) – Δ(α), representing how much greater a 

reduction is achieved by moving γ instead of α:  

41) Δ(γ) – Δ(α) = (a+1)(s-2)+2 

Note that a is strictly positive, as is (s-2),19 so Δ(γ) – Δ(α) > 0. This is the essential result: 

moving the full coordination always results in greater improvement than moving a single 

conjunct. Insofar as a movement that is shorter and more optimal blocks a longer, less 

optimal move (there is reason to expect both conditions to matter), we arrive at a 

structural analogue of the Coordinate Structure Constraint. 

  It should be pointed out immediately that what is really predicted here is a matter of 

structure. Rather than calling it a “Coordinate Structure Constraint”, it should properly be 

called a Symmetric Structure Constraint. Seen that way, an immediate challenge is the 

analysis of structure and movement in the copula. Since Stowell (1981), and argued in 

particular by Moro (2000), Pereltsvaig (2006), among others, the copula is assumed to 

involve a structure like the following: 

42)     VP 

    be    SC (Small Clause) 

      XP   YP 

From this underlying structure, one or the other of XP or YP must move. For Moro, this 

is motivated by Dynamic Antisymmetry, breaking up the unlinearizable small clause [XP  

YP]. If this structure is correct, the small clause should be an island for movement of its 

                                                
19 Rather, (s-2) is non-negative. For the special case of s = 2, note that γ cannot move because it is 
immediately dominated by the root (the antilocality condition). In that configuration, the condition for α or 
β to move is that they must contain more nodes than the unmoving part of the tree; since they are less than 
half of γ already (|γ| = 2|α| +1), this is impossible.  
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immediate daughters, if XP and YP are of equal size. For example, an example like this 

should be impossible: 

43)   [The morning star]i is [ti [the evening star]]. 

That is, the relevant movement could pass the FMC threshold, but is nevertheless both a 

worse and longer move than moving the whole double. At first sight, it seems we cannot 

have our cake and eat it too: if the Symmetric Structure Constraint is to have the desired 

consequences for coordination islands, it should apply to make the small clause 

complement of the copula an island, apparently incorrectly. 

  However, any asymmetry in size between XP and YP can tip the balance and break 

the island effect. I think appealing to Case features (a difference in size of the structural 

bundles associated with Nominative vs other features), though a possibility, is the wrong 

move. Bowers (1993), Svenonius (1994), Starke (1995), among others, propose that small 

clauses are asymmetric PredPs, taking XP and YP as specifier and complement, 

respectively. If that is correct, then perhaps we can maintain that the Coordinate Structure 

Constraint follows from the Symmetric Structure Constraint, while small clauses, as 

instances of sufficiently asymmetric structure (e.g., PredPs), do not constitute a 

counterexample. 

  The larger lesson here is that the calculus of tree-balancing creates regions from 

which optimal movement cannot escape; the suggestion is that these are natural “islands”, 

in the linguists’ sense (see Ross 1967). We can make sense of what is going on here: if 

the goal is to transform structure to be bushier, there will be thresholds of local structure 

which prevent said structure from being broken apart by movement. A sufficiently bushy 
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local subtree can be rearranged within a larger structure, but will prove resistant to 

subextraction of its parts, in the terms outlined above. I leave a fuller exploration of 

island effects to future research, noting only the general prediction that islands can be 

understood in terms of tree-balancing insofar as they correspond to well-balanced 

structures (possibly structure created by movement).20 

 

4.7 Roll-up movement and Malagasy 

In this section, I discuss some empirical properties of so-called roll-up movement,21 

focusing on Malagasy as an illustration.  I suggest here that this pattern receives a natural 

understanding if movement is a mechanism for reducing the number of c-command 

relations in syntactic trees (at least, the trees that interface interpretation sees, where 

copies are collapsed).  This is of particular interest, because roll-up movement, while 

empirically well-supported, is mysterious from the point of view of theories that look to 

features as the explanation for movement. On the present account, such movement 

creates a positive feedback loop, a decidedly natural phenomenon.  

 

4.7.1 The basic pattern 

Deviations from the universal linear order that would follow from a universal hierarchy 

(Cinque 1999) in conjunction with Kayne’s (1994) LCA do not appear to be random, but 

                                                
20 It is tempting to think of phases in these terms, given the claim that phases are associated with “edge” 
features (e.g., Chomsky 2007), thus with movement.  
21 In the literature, this kind of very-local movement deriving head-final ordering is also called 
snowballing, intraposition, and onion-skin movement. 
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tend to involve strict mirror-order reversal of the expected order over some continuous 

sequence of the hierarchy. This pattern is extraordinarily widespread; examples include: 

a) All ‘mirror principle’ (Baker 1985) effects, on a strong interpretation of the 
relation between morphology and syntax;  

b) Word order in Dutch and German non-finite clauses (Zwart 1994, Müller 1998, 
Koopman and Szabolcsi 2000);  

c) Hungarian verbal complexes (Koopman & Szabolcsi  2000);  
d) Malagasy clauses (Rackowski 1998, Rackowski and Travis 2000, Pearson 2000, 

2007, Svenonius 2008),  
e) Both clauses and DPs in Niuean (Kahnemuyupour and Massam 2006);  
f) Many others; see already Kayne (1994) for further examples. 

On an account where displacement is caused by lexical features, there is no immediate 

explanation for why these strictly reversed sequences should be observed.22 Why 

something like this should be true on such a systematic and cross-linguistically 

widespread basis is not well understood, to say the least. Clearly other languages lack the 

relevant movement-driving features in those locations (because some languages exhibit 

the expected base order there). Then it is a matter of free variation among languages; but 

if so, why do we not find languages with some, but not all, of the movement-driving 

features in these regions (resulting in, for example, ‘long’ reversals, i.e. reversal of the 

relative order of non-trivial strings)? If there were nothing more than random variation in 

features at work, surely such patterns would be expected to vastly outnumber the 

incidences of strict reversal. But they do not; for example, examining some cross-
                                                
22 But see Svenonius (2007) for an attempt to implicate acquisition effects, and relevant discussion. 
Biberauer et al (2007) propose a Final Over Final Constraint (FOFC) to capture the facts at issue, 
accounting for strictly reversed sequences in terms of agreement for movement-inducing features 
obligatorily propagating down the tree.  A full discussion of the FOFC is beyond the scope of this work, 
though I will point out here that it appears to be too strong.  For example, the FOFC would seem to rule out 
many of the rare but attested DP orders discussed in the next chapter. Their constraint also runs afoul of 
two important facts of Malagasy discussed in more detail below: although vP adverbs appear in mirror 
order, in conformity with the FOFC, the verb and object do not; more puzzling still from the point of view 
of the FOFC, the two deepest adverbs (tsara and tanteraka) may optionally appear in uninverted order. See 
below. 
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linguistic data on the frequency of word order within nominals, the strictly rolled-up 

mirror order is on a par with the base order, comprising the two most common orders by 

far (see Cinque 2005, and Chapter 5). Moreover, overt manifestation of the morphology 

believed to drive these movements is often in short supply. For instance, Niuean, with 

snowballing movement in both DPs and clauses, displays robustly isolating morphology 

(Kahnemuyipour & Massam 2006), casting doubt on any putative need to move for 

affixation or other morphological reasons.  Something else seems to be at work here. 

 

4.7.2 Malagasy facts 

Malagasy is one language displaying such a pattern (Rackowski 1998, Rackowski and 

Travis 2000, Pearson 2000, 2007, Svenonius 2007).   Importantly for us, “[w]hile the 

order of preverbal adverbial elements in Malagasy conforms to Cinque’s universal 

hierarchy, postverbal adverbials are in the mirror order.” (Rackowski and Travis 2000: 

120)  The examples below illustrate: 

44)  M-   an- asa    lamba   tsara foana    Rakoto 
   Pres-AT wash clothes well  always  Rakoto 
   “Rakoto always washes clothes well.”  (Rackowski 1998: 7) 
 

45)  Tsy    manasa             lamba   tsara intsony   mihitsy Rakoto. 
        NEG PRES.AT.wash   clothes  well  anymore at-all    Rakoto 
        “Rakoto does not wash clothes well anymore at all.”  (Rackowski 1998: 18) 

The post-verbal adverbs in Malagasy appear in the reverse of the expected order. Let us 

suppose, with Cinque (2005), that roll-up movement proceeds in short, but not too-short 

steps: from the complement of one phrase to the specifier of the next. I follow Svenonius 

(2007) in labeling the alternating heads that do and do not induce movement as G and F, 
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respectively. The pattern in the lower portion of the Malagasy clause (where we find 

post-verbal adverbs in reverse order) is derived by iterating the pattern below. Before 

roll-up movement, the local configuration looks like this: 

46)     GP 
 
       G0     FP 
 
             AdvP       F’ 
             
        F0               XP   
 
 
Roll-up movement is diagrammed below: 
 

47)      GP 
 
     XP     G’ 
 
       G0             FP 
   
               AdvP             F’ 
 
            F0          t(XP)   
 
 
The pattern iterates, with the GP at the top of the diagram playing the role of XP in the 

next step of roll-up movement (thus, moving over another FP with an AdvP specifier). 

  We can apply the FMC to this configuration.  Letting a represent the number of 

nodes in AdvP,23 and x the number of nodes in XP, the movement results in fewer c-

command and containment relations if the following inequality holds.  

                                                
23 Although I include a term for the interior size of the AdvP here, as a way of being agnostic, various 
considerations suggest that this value should be 1, regardless of the actual lexical contents of the AdvP.  
This reflects the idea that Externally Merged left branches are opaque to the structure embedding them; cf. 
Uriagereka (1999). In fact, the post-verbal adverbials of Malagasy seem not to permit additional structure 
anyway.  Rackowski and Massam (2000) analyze the lower adverbs as heads, not specifiers, noting for 
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48)  2x > a + 9 

Simple counting tells the tale here.  Specifically, as the pattern of roll-up movement 

continues, the moving “snowball” gets ever larger, while the local configuration crossed 

by movement remains the same.  In terms of the inequality above, the quantity a is 

constant for each step of roll-up movement, but the quantity x is larger each time.  In 

present terms, this can be interpreted as a stronger motivation for each subsequent step of 

roll-up movement.   

 

4.7.3 Dynamics of roll-up movement 

This view of the dynamics of roll-up movement has two consequences.  First, we expect 

that the earliest stages of roll-up movement should be the most weakly motivated.  If the 

optionality of a particular movement reflects relatively weaker motivation for it (i.e., the 

movements that are optional are those that produce the least reduction of c-command 

relations), then we expect that the first stages of roll-up movement, in the deepest part of 

the tree, should be most subject to optionality.  Second, we expect that once roll-up 

movement gets underway, it should continue unless derailed in some way. 

   The first prediction aligns nicely with the facts.  In particular, Rackowski (1998) 

reports that that the inversion of the two most deeply embedded adverbs (tsara and 

tanteraka) is optional. I interpret that as indicating that the first step of roll-up movement 

in the Malagasy vP is optional.  That is problematic for an approach which looks only to 

                                                                                                                                            
instance that intensification by tena ‘very’ is impossible for these items, unlike other adverbs, suggesting 
they may not be phrasal. I set this possibility aside. 
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lexical features, but it makes good sense if what is at stake is structural optimization, 

since the benefit of moving is least on the first step.  

  What about the second prediction?  On the face of it, we would seem to predict that 

roll-up movement should go “all the way up,” driven ever more strongly on each step. I 

leave a fuller exploration to future work, merely mentioning here two ways of explaining 

the fact that roll-up in Malagasy is limited to the lower (post-verbal) adverbials.   

  First, note that Chomsky (2000) takes vP to be a phase boundary.  We might then 

suppose that roll-up movement deposits the moving snowball within the Transfer domain 

of vP.  If so, it will be effectively invisible to material in the higher phase, and so roll-up 

movement should stop there.  That seems promising, in that the voice morphology is an 

immediate prefix to the verb in Malagasy.  That is consistent with the roll-up snowball 

landing in a specifier just below the voice head, which heads a phase, there being 

rendered invisible to the higher (CP) phase. 

  Another possible explanation is that roll-up movement transitions into an even 

more local form of movement, called “skipping”, which does not result in reversed word 

order; instead, skipping movement has results that are superficially indistinguishable 

from simple “long” movement.  In this regard too, the facts of Malagasy are suggestive.  

In particular, Malagasy is a VOS language; some movement applies to bring the rolled-up 

region to the left of the subject.24 

 

                                                
24 This requires further comment. The “snowball” constituent does not seem, on the face of it, to undergo 
long movement over a large stretch of structure to the left of the subject.  Rather, preverbal adverbials, 
negation, and Tense also precede the vP snowball.  This actually is consistent with skipping, if a further 
movement brings the skipped-over stack of heads to the left independently. 
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4.7.4 Rightward Object Shift in Malagasy: Against head directionality 

It is interesting, and potentially important, to note that when the object of the verb is 

definite, it can be displaced to a position amidst the rolled-up post-verbal adverbial 

material, as the examples below illustrate: 

49) a. Tsy   manasa              lamba   mihitsy ve Rakoto? 

    NEG PRES.AT.wash clothes  at-all     Q  Rakoto 

        b. *Tsy manasa mihitsy lamba ve Rakoto? 

        c. Tsy   manasa              mihitsy ny lamba     ve Rakoto? 

    NEG PRES.AT.wash at-all    DET clothes Q  Rakoto 

    ‘Does Rakoto not wash clothes at all?’ 

       (Rackowski & Travis 2000: 120) 

The generalization to be drawn here is that indefinite objects are obligatorily right-

adjacent to the verb, while definites may be separated from the verb by adverbials. This 

looks very much like a form of Object Shift (interacting with roll-up movement).  

  This is an interesting fact. It tells us, for one, that whatever conditions govern 

Object Shift in other languages may be operative here as well. It would also seem to 

provide evidence against a Head Directionality Parameter approach to the word orders 

here analyzed as arising from roll-up movement, whereby the rightward heads simply 

take their complements on the left, without movement (see Abels & Neeleman 2009 for a 

recent articulation). If so, we would have to countenance rightward movement to get the 

object further right of the verb (or, perhaps, rightward specifiers). 
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4.7.5 Reconciling Antilocality and strict reversal 

There is an issue that should be addressed at this point. I have suggested that the pattern 

of movement described here might underlie the phenomenon of roll-up movement. The 

essential characteristic of that pattern of movement is that the relevant reversals are 

“short”: in surface terms, the pattern results in a single overt position being reversed. 

  On the face of it, that ordering pattern seems to conflict with the predictions made 

here. It is an unavoidable commitment of this view of movement that it must be at least 

minimally antilocal: it must skip at least two tree positions. Put another way, movement 

that crosses only a single position (whether a head X0, or a phrase XP, hangs off the 

crossed branch) is predicted to be systematically impossible. The trees below illustrate 

the offending flavor of movement. 

50)  *          * 
      α          α       

       X0    t         XP    t     

 

The prediction that at least two structural positions must intervene between launching and 

landing sites of movement appears to conflict with the empirical picture of roll-up 

movement, involving inversion around a single overt element. On the face of it, this 

analysis would seem to predict that roll-up movement would produce, in the surface 

order, a series of short but non-trivial reversals, with subsequences of (at least) two 

elements (the two or more positions necessarily skipped by roll-up) surviving in their 

native (head-initial) order. In other words, for an abstract underlying sequence 

12345678…, this pattern of movement ought to produce something like …-78-56-34-12. 
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However, there is a simple way to reconcile the analysis with the facts. Koopman (1996) 

proposes a Generalized Doubly-Filled Comp Filter (GDFCF): 

51) A single XP cannot have both an overt head, and an overt specifier. 

It follows as a consequence of the GDFCF that minimally antilocal movement, of the sort 

predicted here, must appear on the surface to involve order reversal of a single overt 

position.25 To see why, let us consider the options. By hypothesis, the relevant kind of 

movement proceeds from the complement of one phrase, to the specifer of the next 

higher phrase. We do not know if the phrase embedding the rolled-up constituent as its 

complement also takes a specifier, or not.  

  This means that the configuration for roll-up movement, under the present analysis, 

is one of the two possibilities diagrammed below. Here, α is the moving category, which 

begins as a complement within XP, and ends up as the specifier of a higher phrase YP. 

52)  a.   YP          b.   YP 
  
       α   Y’            α   Y’ 
 
       Y0   XP            Y0   XP 
 
         ZP   X’         X0        t 
 
          X0     t 
 
Per the GDFCF, within XP and YP, the specifier or the head may be overt, but not both. 

YP takes overt α as its specifier; therefore, its head Y0 must be silent. Within XP, at most 

                                                
25 The discussion here assumes that head and specifier are still distinct structural positions; put another 
way, the GDFCF is a restriction on pronunciation. See Starke (2004) for a more radical interpretation; he 
proposes that the GDFCF holds because specifiers and heads are never simultaneously present, structurally. 
In effect, having a specifier “counts as” having the appropriate head. If so, then the reasoning in this section 
no longer holds up. 
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one of X0 (head) and ZP (specifier) is overt. This yields the desired result: there will be 

one overt position (namely, the head or the specifier of XP) in the stretch of phrase 

structure crossed by a single step of roll-up movement. 

 

4.8 Iterating Patterns of Movement 

To begin to understand how movement might unfold in a derivation guided by concerns 

of economy of command, we can frame an important question given the different basic 

forms of movement predicted above: how does iteration of the pattern affect the 

conditions for movement?  Does the movement strengthen, weaken, or leave unchanged 

the motivation for undertaking an identical movement as the moved-across configuration 

repeats, later in the derivation?  Which terms in the mathematical expression regulating 

the next step of that pattern change, and in which direction? 

  In this section, I focus on the kind of movement known as Roll-up movement, 

discussed in the last section and schematized below. 

53) a.       b. 
 
 
 

More structure accumulates via Merge, until the configuration repeats (right): 

54) a.      b.      c. 
 
 
 
 
Notice the similarity between the first stage (a) of (53) and the last stage (c) of (54); the 

same configuration (buried beneath a stack of two heads) recurs. Just to make this 
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completely clear, I am drawing attention to the local isomorphism between the bolded 

portions in (55a) and (55b): 

55)  a.        b. 

 

Now movement occurs in the same configuration, analogous to the transformation of 

(53a) into (53b): 

56) a.       b. 

  

 

Recall that, according to the Fundamental Movement Condition, the relevant comparison 

is (a-1)(s-2) > b+1. Since the non-moving part of the tree looks the same for both the first 

and the next step of roll-up movement, the factors b and s are constant (they represent the 

node count and depth of this region). Only the factor a has changed; it has grown by 6 

units (i.e., the moving category has 6 more nodes). 

  If the size of the moving alpha is within a certain range, this pattern feeds itself, 

exhibiting positive feedback. That is, if the conditions governing this type of roll-up 

movement were met on the last iteration, they will be met even more strongly the next 

time (after two more layers of structure have been added to the top of the tree). Notice 

also that, while it quickly becomes the case that a more evenly-balancing movement 

could be found by moving something smaller, deeper in the tree, the ‘snowball’ is the 

nearest object to the root whose movement is permitted. Given the pervasive evidence for 

locality/minimal search throughout the organization of human grammar, it is a small leap 
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to wonder whether it is operative here. If so, we directly predict a locality constraint on 

movement of the required sort, such that the shortest enabled (FMC-satisfying) 

movement is chosen. In these terms, we can rationalize a pattern in which snowballing 

movement ‘takes off’, a self-reinforcing, increasingly-good and first-available option as 

the derivation proceeds.  

  However, as alpha’s size (the ever-growing snowball) passes a certain threshold, 

non-snowballing, successive-cyclic move of the same object that moved on the last step 

is enabled, before the background configuration for roll-up is constructed. The relevant 

configuration arises after the very next Merge operation, adding a single additional layer 

of structure to the root (this minimal dominating structure is bolded below): 

57)  
 
  

The roll-up pattern iterates (not sooner than) after a pair of additional Merges. Here, after 

just one additional Merge operation, a different movement can occur, but only if the 

moving category is large enough: 

58)  a.        b. 

 

 

I suggest calling this predicted form of hyper-local, successive-cyclic26 movement 

‘skipping’. I argued just above that the snowballing pattern has positive feedback, such 

                                                
26 By using ‘successive cyclic’ to describe this movement, I mean nothing more than that it affects the very 
same object that was affected by a previous movement. Snowballing or roll-up movement, as described 
above, is not successive-cyclic in the relevant sense; it affects a different, strictly ‘larger’ object than the 
last movement. 
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that as the configuration in which it occurs is built anew, each next step of movement 

achieves a greater reduction in the total number of c-command and dominance relations.  

  What about ‘skipping’ – once one step of such movement occurs, are further steps 

of identical movements more or less motivated in terms of balancing the tree?  As it turns 

out, this form of movement is subject to negative feedback. Let us walk through the 

details, one more time. Suppose one step of ‘skipping’ has occurred, as below: 

59)   a.       b. 

 
 
Now the configuration for skipping recurs immediately, after the very next head is 

Merged to this structure (new Merge bolded): 

60)   a.        b. 

 

 

Comparing the configurations, we see a picture opposite to what we saw with the roll-up 

pattern. In this pattern of movement, the moving object is the same on both steps, as is its 

depth of embedding (a and s are constant), but the number of nodes in the non-moving 

part of the tree has grown (b is greater). Recalling the FMC ((a-1)(s-2)>(b+1)), the terms 

in the product on the left are fixed, while the standard of comparison on the right grows; 

there is then negative feedback in iteration. To put it another way, this movement cannot 

feed itself indefinitely.27 

                                                
27 It would seem that the two types of movement might intertwine, with roll-up movement derivationally 
preceding the ‘skipping’ pattern described above, perhaps transitioning back to roll-up movement when 
negative feedback ‘snuffs out’ skipping. I leave further investigation of these matters to future work. 
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  To complete the picture, I turn to a structural analogue of A-bar movement, 

predicted with crucial reference to a notion of syntactic cycle akin to Chomsky’s phase, 

where some material from a previous cycle remains ‘live’ in the derivation of the next 

cycle (see Chapter 8 for further speculative remarks about this pattern of movement). If 

cycles themselves are of a fixed size, hence essentially identical, then from one step of 

‘long’ successive-cyclic movement to the next, the conditions are exactly the same: it is a 

kind of ‘equilibrium’ movement, stable once established.  

  Concretely, consider a typical application of successive-cyclic movement, carrying 

a moving category from the edge of one phase to the edge of the next higher phase. The 

complement of the phase head (this head is indicated by a black dot at the end of a bolded 

branch) is subject to Spell Out/Transfer. So after Transfer, the structure on the left is all 

that remains. Then another cycle is constructed atop the remnant of the last phase, with 

the new phase head the last item merged, as indicated (right): 

61)  

 

 

The configuration is transformed by a step of movement, diagrammed below: 

62)  
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Then Transfer applies again, and the process repeats at higher cycles, if any. Consider the 

series of cyclic wh-movements in an English example like (63), indicated schematically 

with arrows: 

63) What do you think t that Sarah believes t that John bought t? 

Here, the wh-moving object, with its source in the most deeply embedded clause, 

achieves a surface position at the ‘top’ of the matrix question. This is so despite the lack 

of any obvious semantic, at least, motivation for intermediate steps in movement (in this 

case, across that Sarah believes).28  In simplistic terms, this kind of movement represents 

something like a stable solution. If one iteration of that kind of movement satisfied the 

FMC, then the next such step of movement will as well, and by the same numerical 

margin (under the simplifying idealization that cycles are identical to each other in 

relevant structural details – in this case, their node count and depth).  

 

4.9 Conclusions 

In this chapter, I have explored the idea that syntactic displacement is motivated by tree-

balancing. I formulated the Fundamental Movement Condition, repeated below: 

64)  (a-1)(s-2) > b+1 

This expression relates the number of nodes in the moving part of the tree (a), in the non-

moving part of the tree (b), and the depth of embedding of the former within the latter (s). 

I derive from this two predictions of minimal distance and minimal size: 

65)  A category immediately contained by the root cannot move. 

                                                
28 See McCloskey (2002) for a particularly illuminating look at the workings of the complementizer system 
and A-bar movement, especially with respect to intermediate stages of long-distance movement. 
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66)  The moving category must consist of at least 5 nodes. 

Antilocality as derived here is empirically well-motivated.  The size threshold effects 

(both the “hard” prediction of a minimal size for a moving object, and the “soft” 

prediction that larger objects should move more and farther) are novel, but I provided 

several empirical domains where they seem to get the facts right. 

  This conception of movement also predicts that sufficiently symmetric structures 

should resist movement.  I argued that this provides a naturalistic explanation of the 

Coordinate Structure Constraint of Ross (1967), though noting a conflict with the 

treatment of small clauses offered by Moro (2000).   

  Next, I considered the pattern of very-local inversion known as roll-up movement, 

focusing on some facts from Malagasy. As I showed, the data support, first of all, the 

conclusion that it is indeed movement, not a choice in the relative order of complements 

and heads, that derives the Malagasy word order.  There is also suggestive support of the 

structurally-driven account of roll-up movement I provide, especially in the fact that 

reversal is optional for the deepest pair of adverbs. 

  I finally considered the possibility of derivational canalization and the effects of 

iterating certain patterns of movement. I suggested that the cross-linguistically very 

frequent pattern of snowballing or roll-up movement can be understood in terms of a 

runaway positive feedback loop, where each step of movement creates an increasingly 

strong pressure for the next movement of the pattern to occur (modulo the remarks about 

the interaction of ‘skipping’-type movement with roll-up). 
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  In this chapter, I have focused on the mathematical predictions that follow from 

supposing that movement is for balancing trees, with only schematic remarks about how 

some familiar movement patterns might receive a natural explanation in these terms. Any 

attempt at a comprehensive survey of the relevant phenomenology is far beyond the 

scope of this chapter. But in an attempt to move forward, in the next chapter I focus on a 

smaller, well-studied body of phenomena, involving word order patterns observed within 

nominal phrases across the world’s languages. I show there that the possible and 

impossible orderings can be explained by supposing that movement is constrained by the 

Fundamental Movement Condition, so long as the shape of the affected tree structure 

falls within certain bounds. 
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CHAPTER 5: 
TREE-BALANCING IN THE DP AND UNIVERSAL 20 

 
5.0. Introduction 
 
This chapter applies the ideas of the last chapter to the relative order of elements within 

the DP.  Recall that chapter 4 argues that syntactic movement is a tree-balancing 

mechanism, i.e. a way to reduce the total number of c-command relations (equivalently, 

irreflexive dominance relations) in syntactic trees. While orthogonal to familiar 

Minimalist explanations of movement in terms of checking features or licensing 

interpretations, the intuition fits squarely within the Minimalist paradigm.  Here, 

movement is not seen as a “Last Resort” (Chomsky 1986); instead I claim it is a 

structural response to conditions of efficient computation.  

  The purpose of this chapter is to confront this treatment of movement with some 

well-established and reasonably nuanced empirical facts.  While the last chapter 

developed the idea that structure determines movement possibilities, here I pursue the 

related idea that movement reveals structure.  I argue that observed movement patterns in 

a syntactic domain (here, the DP) diagnose the underlying structure of that domain 

(supposing that underlying structure to be identical across languages). 

  In this case, I will focus on the cross-linguistic ordering of demonstrative, numeral, 

adjective, and noun (the topic of Greenberg’s (1963) Universal 20).  Of the 24 logically 

possible orders of these elements, Cinque (2005) reports that only 14 are attested as 

neutral/unmarked orders. I hypothesize that there is a single universal base DP tree, and 

that all and only the attested orders arise via instances of movement that reduce the 

number of c-command relations in this tree (movement always improves tree balance).   
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  This strongly structural account demonstrably succeeds, so long as the base DP tree 

falls within structural limits detailed here.   That is, we can find a single underlying base 

structure, such that each of the 14 attested relative orders (of Dem, Num, Adj, and N) has 

at least one derivation in which every step of movement reduces the number of c-

command relations in the tree, while none of the 10 unattested orders has such a 

(monotonically tree-balancing) derivation. In fact, there are many possible underlying 

trees that meet this condition.  The possible underlying structures with this property 

(found by computer-assisted search, detailed in the Appendix) include good matches to 

recent cartographic proposals, including in particular a number of strictly right-branching 

spines (considered a likely candidate for the shape of the base tree).  If the structural 

predictions made here turn out to be correct, tree-balancing may be the deep “why” 

behind the nuanced facts of possible and impossible DP orders (and perhaps syntactic 

movement more generally).   

 

5.0.1 DP orders: A brief sketch 

The typological facts at issue were first described by Greenberg’s Universal 20: 

‘‘When any or all of the items (demonstrative, numeral, and descriptive 
adjective) precede the noun, they are always found in that order. If they 
follow, the order is either the same or its exact opposite.’’  
(Greenberg 1963: 87) 
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Cinque (2005) and Abels & Neeleman (2009) update this description; Figure 1 

summarizes their findings (orders in grey cells are unattested)1.  See also Hawkins 

(1983), Lu (1998), Dryer (2009), among others. 

a. DMAN b. DMNA c. DNMA d. NDMA 
e. *MDAN f. *MDNA g. *MNDA ◊ h. *NMDA 
i. *ADMN j. *ADNM k. ANDM l. NADM   † 
m. *DAMN n. DANM o. DNAM p. NDAM  † 
q. *MADN r. MAND s. MNAD t. NMAD   † 
u. *AMDN v. *AMND w. ANMD x. NAMD 

  Table 3: Attested and unattested DP orders.  
   Relative orders of (D)emonstrative, Nu(M)eral, (A)djective, and (N)oun. 
   ◊: Greenberg’s formulation incorrectly allows this order. 
   †: Greenberg’s formulation incorrectly excludes these orders. 
 
Cinque (2005), further developing earlier (1996, 2000) proposals of his, argues that the 

attested orders are derived by movement from a base order DMAN (e.g. English these 

three blind mice) by phrasal movement affecting the N(P), or something containing it. I 

leave a discussion of this proposed constraint, and its theoretical treatment, to section 5.1. 

 

5.0.2 Tree-balancing is a sufficient explanation 

In what follows, I show that tree-balancing can account for the facts summarized in 

Figure 1.  That is, there are possible shapes of a universal base DP tree such that each 

movement in the derivation of each attested order decreases the number of c-command 

relations in the tree, while each unattested order involves one or more movements which 

                                                
1 I abbreviate demonstrative as D, numeral as M, adjective as A, and noun as N.  The lettering scheme here 
matches Cinque’s (2005: 319-320) 6(a)-6(x), for ease of reference. 
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would increase (or leave unchanged) the number of c-command relations.  The tree below 

is one example of a possible base structure meeting this condition:2 

1)      Dem      D subtree: 11 nodes, depth 3 
                 
               M subtree: 5 nodes, depth 3 
          Num      
                A subtree: 5 nodes, depth 3 
            Adj                
                 N subtree: 11 nodes 
                 Noun 
 
   
For example, the attested order NDMA is derived by a single movement (of the N sub-

tree).  As shown below, this move improves tree balance (i.e. reduces the number of c-

command relations in the tree), and so is correctly predicted. 

 
2)  a.    Dem      b. 

                              Dem 
 
          Num           Noun         Num 
 
            Adj                 Adj 
 
                 Noun 
 
 (Base) DMAN: 124 c-command relations  NDMA: 104 c-command relations 
 
On the other hand, the last step of movement in the derivation of unattested order ADNM 

from attested order DNMA, depicted below, would increase the number of c-command 

relations in the tree.  It is thus correctly excluded as a possible pattern of movement.3 

                                                
2 This is just one possible shape fulfilling the condition; there are other possibilities.  Moreover, note that 
what is predicted by this account is only the gross tree shape, not the identities of the nodes. The goal is to 
use the empirically observed ordering behavior of fixed points in the structure (here, Dem, Num, Adj, 
Noun) to track the transformations of a finer-grained underlying structure. 
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3) a.    Dem       b. 

                                 Dem 
 
            Num          Adj          
                             Num 
       Noun    Adj                  
                        Noun 
Attested DNMA: 114 c-command relations  *ADNM: 124 c-command relations. 

 
 
5.0.3 This is a surprising result 

What are we to make of this?  On the one hand, the possibility of a tree-balancing 

account of this array of facts may not be as profound as it seems, since a fundamental 

empirical generalization in this domain is that all movements affect the noun, or 

something properly containing the noun (Cinque 2005).  If that is explained for other, 

unrelated reasons (e.g., featural licensing of the extended projection; see Cinque (2005)), 

then tree-balancing may just be an accidental side effect, rather than a cause, of 

movement.  

  But the relevant DP trees (in which all the attested orders, and none of the 

unattested ones, are derivable by tree-balancing movements) are quite special, populating 

a tiny sliver within the space of conceivable tree structures.  Indeed, there is no a priori 

reason to expect such an account to be possible at all; it could as well have turned out that 

there is no underlying tree that could motivate all and only the attested orders in these 

terms. It is all the more significant that the required tree shape looks quite close to current 

                                                
3 This is just one possible derivation of this order.  As explained below, it is necessary to consider other 
possible routes to this order, and ensure that none of them proceed via a series of movements that strictly 
decrease the total number of c-command relations present in the tree as they apply. 
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cartographic proposals.  It would seem too much to attribute to coincidence if the “real” 

DP tree, as revealed by cartographic research, turns out to be one of these trees; they 

really are sparsely distributed in the space of possibilities.   It remains to see whether 

the map of the DP, still something of a moving target, meets these conditions or not.  But 

it is encouraging that the shapes predicted here look at least plausible as hypotheses about 

the cartography.  If the real map does fit these conditions, syntactic movement may find a 

deep explanation going beyond lexical features,4 in purely structural terms of tree-

balancing (by hypothesis, for structural/computational optimization).  

  Moreover, the featural account of Cinque’s generalization faces challenges in light 

of the study of Abels (2011), who looks at the typology, among Germanic varieties, of 

relative order of Modal, Auxiliary, Verb, and Particle.  Abels reports that if one takes the 

relevant hierarchy to be Mod > Aux > V > Prt, the typology reproduces the DP typology 

exactly, mutatis mutandis.  In other words, the attested orders are those that follow 

Cinque’s Generalization for this hierarchy: the only permitted movements affect Prt, or 

something properly containing it. 

  Notice, however, that the licensing account Cinque sketches, motivating movement 

within the DP for reasons related to its status as the extended projection of the noun, does 

not extend comfortably to Abels’ data.  That is, while it is standard to take the particle to 

be at the bottom of this portion of the tree, the clausal domain is not thought of as an 

                                                
4 See chapter 4 for clarification of my stance on the role of features in driving movement.  To recap briefly, 
we probably still need features to explain why movement patterns for individual languages often tend to be 
quite rigid.  But the present account might provide a deeper, principled explanation for the existence and 
distribution of movement-driving features themselves; by hypothesis, they are not brute accidents of cross-
linguistic lexical variation, but rather are such as to drive beneficial tree-balancing movements.  This might 
be studied from a diachronic perspective (say, looking for a “cline” in language change towards movements 
which provide better tree balance), but I cannot pursue the matter here.  
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extended projection of the particle.  Rather, the familiar intuition is that the clause is an 

extended projection of the verb.  But structurally, the verb is a higher category in the 

base.5  It seems unlikely that movement in this domain is motivated by a need for 

projections to check particle features, for example.  Instead, what remains is a structural 

generalization: the deepest part of the base structure must move. 

  If this can be made to work, it allows a unification of two of the basic activities of 

syntax: on the one hand, drawing maps of syntactic structure, and on the other, 

determining the conditions on movement.  If movement is driven by tree-balancing, then 

each instance of movement tells us something about the structures affected and produced 

(namely, that the latter must support fewer and shorter long-distance dependencies than 

the former).  In other words, movement diagnoses structure, and structure determines 

possible movements.  The present chapter can be viewed as an extended diagnosis of DP 

structure, on the basis of the movements observed in that domain across languages. 

 

5.0.4 Structure of this chapter 

The rest of this chapter is structured as follows.  In section 5.1, I describe the empirical 

facts at issue in greater detail.  In 5.2, I present my assumptions and methodology.  

Section 5.3 provides an overview of the numerical predictions I make.  Section 5.4 

comprises a discussion of these predictions and a comparison with cartographic proposals 

                                                
5 This must be true for Abels’ assimilation of the ordering facts to Cinque’s Generalization to hold.  One 
could not, for example, simply suppose that the base order was Mod > Aux > Prt > V; for then movement 
of the Prt without the verb, robustly attested, would constitute remnant movement. 
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in the literature. Lastly, 5.5 concludes the chapter, summarizing what I have established 

and exploring issues for future research.   

  Further relevant material is included in Appendix A.  This includes a much more 

technical and thorough discussion of the methodology I employ, a table of numerical 

results and explicit solution lists, and the simple program used to explore the relevant 

structural conditions.  

 

5.1. DP orders: Facts & analysis 

As Cinque argues, the distribution of orders, as seen in Figure 1 above, is strongly 

consistent with the view that the possible orders are derived by movement from a 

common Dem Num Adj Noun (DMAN) base order.6  This regularity is strong evidence 

for “cartographic” proposals; it is unclear how one could explain the absence of the 

unattested orders in a “non-configurational” approach (cf. Hale 1983).     

  Cinque (2005) noted the striking fact that apparently only movements affecting the 

NP, or something properly containing it, are found. I will hereafter refer to this as 

Cinque’s Generalization: 

4) Cinque’s Generalization:  In the derivation of basic DP orders, movement affects 

the NP, or an XP properly containing NP. 

That is, there is no evidence of so-called remnant movement (den Besten & Webelhuth 

1987, Müller 1998, Hiraiwa 2002, among others) within the DP, though remnant 

                                                
6 Properly speaking, they are all derived from a common syntactic hierarchy which, if no movement 
applied, would be linearized as DMAN; much current work takes it that linear order is determined after 
syntax, with syntax-internal forms unordered. 



 

 

134 

movement in other domains may well be real.  Most telling is that the orders that could 

only be derived by remnant movement (e.g. ADNM) are systematically absent.  I return 

to this issue below; for now, I assert that the availability of remnant movement elsewhere, 

as well as its unavailability within the DP, could both be explained wholly in terms of the 

tree-balancing concerns pursued here.  On the present account, patterns of movement are 

governed by the geometrical structure of the tree, so it is unsurprising to find different 

patterns in different syntactic domains. 

 

5.1.1 Cinque’s Generalization as Harmonic Bounding of left alignment 

Steddy & Samek-Lodovici (2011) propose an Optimality-Theoretic account of Cinque’s 

Generalization.  In their view, Cinque’s Generalization falls out naturally due to 

harmonic bounding (Samek-Lodovici 1992, Prince & Smolensky 1993) of Align-Left 

constraints applying to the individual nominal elements. Crucially, their Align-Left is 

penalized by intervening traces; this has the effect of ruling out remnant movement, 

deriving the desired typology.   

  There is a close relationship between the ideas pursued in this chapter and the 

mechanics of Steddy & Samek-Lodovici’s account.  Note that, in light of Kayne’s (1994) 

LCA, there is an inextricable link between linear position and hierarchical structure; in 

crude terms, elements higher in the tree linearly precede lower elements (more precisely, 

if an element A asymmetrically c-commands another element B, the terminals that A 

dominates precede the terminals that B dominates).  The present account favors tree 

forms with fewer c-command relations; in terms of a given portion of tree-structure, this 
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translates as a penalty for depth in the tree, with deeper elements entering into more c-

command relations.  Put another way, relative to each piece of structure there is a 

preference to have that structure as high in the tree as possible.  But, again due to the 

LCA, movement higher in the tree amounts to movement leftward in the string.  As a 

consequence, a preference for tree-balancing in hierarchical structure appears as a 

preference for leftward alignment in linear order.  I leave to future work a more careful 

comparison with their approach, including ways to empirically distinguish between these 

two explanations.7 

 

5.1.2 Cinque’s Generalization in Artificial Langauge Learning 

The work of Culbertson et al (2012) on DP ordering in an artificial language learning 

paradigm provides a powerful new way to study the nominal ordering facts at issue.  

Presented with a conflicting mix of (fragments of) nominal orders, their subjects alter the 

frequency distributions in their own outputs to boost the cross-linguistically most 

common orders, while typologically rare orders – and especially, unattested orders – are 

avoided, even when they dominate the input.  This effect appears not to be an artifact of 

prior foreign language exposure, and it is measured after only a single hour-long training 

session (see those works for details).   

                                                
7 The present account, as far as I can see, depends more sensitively on the exact syntactic structure 
involved.  It also allows, in principle, remnant movement.  In a sense, then, it is less restrictive than the 
account put forward by Steddy & Samek-Lodovici (2011).  However, note that the conditions here are 
stated uniformly over nodes of all types; it is thus a more general explanation than they pursue, where the 
Align-left constraints specify the elements they target (namely, Demonstrative, Numeral, Adjective, and 
Noun). 
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  It is hard to avoid the conclusion that some deep cognitive bias is at work both in 

their experiments, and “in the wild”, leading to the distribution of nominal orders we 

find.  In particular, in this case we should not appeal to the (undeniably real) effects of 

evolution of the learned portion of language, where small biases can over time lead to 

stark categories and emergent behavior.  The experimental results discussed above 

strongly suggest that we should look within a single speaker, at linguistic cognition of an 

innate and universal nature. 

 

5.1.3.  Cinque’s Generalization beyond the DP 

Another important development is the finding by Abels (2011) that the ordering options 

found for DPs are reproduced exactly in the options for order in verb clusters across 

Germanic varieties.  Explicitly, for a base hierarchy Mod (modal verb) > Aux (Auxiliary 

verb) > Verb > Prt (Particle), we find the same 14 orders.  Put another way, a form of 

Cinque’s Generalization carries over to these verbal sequences: the allowed movements 

affect the Prt, or something properly containing it. 

  This is a challenge for the understanding proposed by Cinque, that his 

Generalization arises as a consequence of feature checking.  The DP is considered to be 

the “extended projection” of the noun, in Grimshaw’s (1991, 2000) sense.  Cinque 

suggests that the movements rearranging the noun are driven by licensing concerns; 

elements of the extended nominal projection must be licensed by establishing a 

relationship with the noun head, through agreement or movement. 
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  But as Abels (2011) points out, the real generalization is, we might say, that the 

bottom of the tree is what moves.  In particular, to get the verb cluster ordering facts to 

work out correctly, the particle Prt must be treated as the head of the extended clausal 

projection.  That conflicts with the usual intuition, that the clause is a projection of the 

verb.  Surely movement within verb clusters is not driven by the need to check Prt 

features?  Abels accepts the implication that the particle is indeed a verbal head in the 

required sense.   

  Here again, I think we are missing the trees for the leaves.  The important part of 

the generalization appears to be structural: movement affects the original bottom of the 

structure, the deepest part of the tree.  If that can be explained for purely geometric 

reasons of tree-balancing (and it can), we need not invoke explanations in terms of the 

properties of the rearranged items themselves.8  Given some scheme for assigning 

identities to the terminal nodes, they will be “carried along for the ride”, reordered in 

some blindly structural way.  Insofar as patterns of movement in different domains look 

alike, despite their different meanings, and moreover look like what concerns of tree-

balancing would produce, we may suspect that the present account is on the right track.  

 

 

                                                
8 It is worth pointing again to the proposal by Steddy & Samek-Lodovici (2011) in this regard; it is clear 
that their account would carry over directly to predicting this distribution of orders, given Align-left 
constraints targeting the relevant positions.  Note however a kind of specificity: for their kind of account to 
go through, exactly these categories must be picked out for alignment optimization, not other categories 
interspersed in the hierarchy.  The present account, while in principle allowing different distributions of 
orders for different structures, applies in general to any kind of tree structure.  We expect parallel patterns 
of movement if parallel structures are affected (however, distinct structures may yield the same pattern of 
movements). 
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5.1.4.  On head-complement order and restrictiveness of analysis 

Abels & Neeleman (2009) propose an account of the DP ordering facts that permits both 

head-complement and complement-head order without movement, reviving the 

traditional “Head Directionality Parameter”. This follows a long tradition of assuming 

that the order in which sister nodes may be linearized can be parametrized (see Chomsky 

1981, Stowell 1981, Travis 1984, Koopman 1984, among others). Given that assumption, 

only 6 of the 14 of the attested orders discussed by Cinque (2005) are necessarily derived 

by movement in their system; the remaining 8 reflect the base hierarchy with various 

choices of head-complement ordering (3 binary choices yield 2^3 = 8 possibilities).   

  These authors argue that their own system is to be preferred, on the basis of 

restrictiveness.  Despite the rigid specifier-head-complement ordering imposed by 

Kayne’s (1994) Linear Correspondence Axiom (LCA), in practice the analyses that 

exploit the LCA require prolific movement, but not too much: enough to derive all of the 

possibilities, but not so much that anything at all can be generated (by a series of leftward 

moves, one can derive any ordering at all).  They argue that their own system is more 

restrictive, in that fewer movements are motivated, and in fewer orders. 

  However, there are several intersecting issues here that must be teased apart.  While 

leaving head-complement order free, as they do, makes available movement-eschewing 

analyses of certain orders, their argument that it restricts analyses does not seem to go 

through.  If anything, the derivational possibilities that might be explored are multiplied: 

now reorderings can be achieved either through leftward movement, as for an LCA 

account, but also through free head-complement ordering.  Put another way, all of the 
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derivations that might be countenanced under the LCA are available in principle under 

Abels & Neeleman’s system, plus others besides (those furthermore exploiting 

complement-head order) 

  The assumption that is required for their account to be more restrictive is that 

analyses with fewer movements are to be preferred.  But it is important to point out that 

the preferences that obtain for a theoretical linguist need not align with preferences in 

acquisition.  That is, while preferring the simplest derivations makes the task easier for 

linguists, we should be cautious about attributing the same preference to children 

acquiring the language.  They are not, after all, little linguists, building theories of 

language that are of a kind with those built by professional linguists.  Rather, they are, by 

hypothesis, pursuing some biological process, unfolding according to its own design in 

conjunction with environmental input, which guides its development but perhaps not in 

the superficially simplest ways. 

  In terms of the present work, recall again the point that movement diagnoses 

structure: movement, on this account, is not just structure-dependent, in the traditional 

sense, but wholly structure-determined.  Thus, the sparer invocation of movement by 

Abels & Neeleman in deriving the array of attested orders places weaker restrictions on 

the possible underlying structure.  I have chosen to spend most of my effort on showing 

that the richer derivations Cinque proposes can all be made to work in terms of tree-

balancing, mostly because that is harder to do, hence a more interesting result.  But it is 

worth going through the effort of showing that the current account can succeed at the 

easier task of motivating the smaller set of movements entertained by Abels & Neeleman. 
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  As Abels & Neeleman (2009) show, 8 of the 14 orders can be obtained without 

movement at all, simply by permuting choices for relative head-complement order among 

the elements of the base hierarchy.  I show below only the 6 orders that crucially require 

movement under their account.9 

5) a. dnma [Cinque’s (c)]      b. ndma [Cinque’s (d)] 
 
 
 
 
 
 c. andm [Cinque’s (k)]      d.  nmad [Cinque’s (t)] 
 
 
 
 
  
 e. ndam [Cinque’s (p)]      f. nadm [Cinque’s (l)] 
 
 
 
 
 
 
These movements – really just three distinct movements, of NP to the edge of NumP or 

DemP, or of [Adj [NP]] to the edge of DemP – can readily be shown to follow from an 

appropriate tree.  First, I show the conditions that must hold for the indicated movements 

to balance the tree: 

6) (n-1)(s+t-3) > a+m  for (a), (d) above. 

                                                
9 I show the simplest, single-movement derivations, with accompanying tree diagrams shaded according to 
base depth (N is darkest, D lightest).  As they point out, other orders might be derived by movement, but 
these six must be.  Other structures, supporting different derivational spaces, could still map to this array.  
For example, the trees that support Cinque’s derivations (see below) do not generate further orders under 
the assumption of free head-complement order.  This turns Abels & Neelman’s argument about 
restrictiveness of analysis on its head: depending on the shape of the base structure, the assumption of free 
head-complement order might allow more possible derivations corresponding to a given surface order than 
under an LCA-based account, presumably making the task of the child acquiring the language harder. 
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7) (n-1)(s+t+u-4) > a+m+d-1 for (b), (e) above. 

8) (a+n-2)(t+u-3) > d+m for (c), (f) above. 

This small set of movements exhausts the permitted possibilities for a certain class of 

base trees.  The following structure is an example of such a tree, for which all and only 

the three movements indicated above are motivated by tree-balancing.  In this case, Dem 

and Num represent a single layer of embedding (e.g., a single functional head), while the 

Adj subtree contains two positions, and the Noun, four. 

9)      Dem 
 
        Num 
 
         Adj 
 
           Noun 
 
The following figure maps out the complete set of movements affecting the structure 

above that satisfy the Fundamental Movement Condition.  In other words, it shows what 

we might think of as the “growth set”: all of the tree forms that are accessible via tree-

balancing movements.  In this figure, I show heads to the left of their complements for 

convenience; in the analysis of Abels & Neeleman (2009), the relative order of head and 

complement is left free, so in general each tree will correspond to multiple surface orders.  

Only the three movements Abels & Neeleman describe are found here; this means that, 

allowing free head-complement order, all and only the 14 orders documented by Cinque 

(2005) are “grown” by tree-balancing affecting this particular base structure. 
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                  Dem 
        Num           Num     Adj     Dem 
      Adj                          Num 
          Adj         Adj 
      NP                       NP 
           NP    NP           NP 
 
 
                         Dem 
               Dem      NP      Num 
        NP      Num 
                Adj      Num       Adj 
                NP        Adj 
 
Figure 1: Derivations for minimal tree with free head-complement order.  
All FMC-obeying derivations affecting the indicated structure. Only three movements are 
permitted (single arrows); double arrows indicate merge of the next higher category. 
 
As indicated, it is rather straightforward to find such trees.  In what follows, I take on the 

far more demanding task of showing that Cinque’s orders can be “grown” as above from 

some suitable base structure, even with heads strictly preceding their complements, as 

assumed by Cinque (2005), following Kayne (1994).  

  Given that both flavors of analysis can be accommodated under this account, it 

seems that the present theory does not stand or fall on the basis of assumptions about the 

linearization of heads and complements.  The crucial evidence will come from 

cartography, where the universal base structure as revealed in that study either will or 

will not be one of the tree forms supporting a tree-balancing account of nominal ordering.  

If the cartographers’ tree matches that shown above (or another form in the same class), 

then we can maintain a tree-balancing approach to movement only in conjunction with 

the assumption that head-complement order is not universally fixed.  On the other hand, 

if the real DP tree happens to be one of those that supports the richer array of movements 
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required to generate the DP typology with strict head-complement order, then a tree-

balancing account is viable under either strict head-complement ordering or free ordering.  

That is, head-complement reorderings of the structures derived below for the LCA-

compliant derivations do not yield unattested orders; only remnant movement can do that. 

 

5.2. Assumptions and methodology 

As a first foray into this domain, I have chosen to pursue the strongest interpretation of 

this treatment of movement. Specifically, following much cartographic work, I assume 

that all languages share a common universal “base” syntactic hierarchy10.  I furthermore 

assume that every instance of movement must instantaneously reduce the number of c-

command relations present in the tree. 

  The account I will suggest is something like a constrained Move Alpha (cf Lasnik 

& Saito 1992), recalling the anything-goes conception of movement of Government & 

Binding Theory: any movement that improves tree balance is possible.  By possible, I 

mean that it is an option entertained by the human mind, a possible learnable language.11 

I make the strong simplifying assumption that all possible orders are attested, and show 

                                                
10 That is not the only tree-balancing analysis of variation in DP order one might consider.  Another 
possibility is that cross-linguistic differences in movement can be tied to cross-linguistic differences in the 
amount of structure present (much early cartographic work pursued this idea, and see the discussion of 
structural variation in Chapters 3 and 4).  But I reject that option here for the simple reason that it is harder 
to falsify than the uniform-base alternative.    
11 A word about acquisition here: the account is cast in synchronic terms of a fully-formed grammar.  But 
of course children must learn the particular language of their environment, which in present terms reduces 
to deducing the movements that have transformed some base structure, available to them in advance of 
experience in some way.  Insofar as movement is optimized in some sense, the structural analyses available 
are correspondingly reduced.  Moreover, we may expect that variation – observing a spectrum of possible 
orderings within a single language – may be crucial to converging on the proper derivation, with 
alternatives representing “nearby” options in the derivational space.  See, in this regard, the comments on 
the range of variation of verbal orderings in Germanic varieties, and the striking implicational relations that 
hold at the construction level.  I leave the exploration of those facts to future research. 
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that the observed array of orders can follow from an appropriate base geometry 

transformed to improve tree balance.   

 

5.2.1 Analytical assumptions 

I follow Cinque (2005) in assuming LCA-based linearization (contra Abels & Neeleman 

(2009), who treat the same ordering facts with underdetermined linearization). Cinque’s 

analysis makes for stronger, more easily falsifiable conditions, since it has more 

movements.12  Note, incidentally, that the present account, if correct, affords us a ready 

reply to Abels & Neeleman’s point that accounts like Cinque’s LCA-based system 

overgenerate.  Treating movement as tree-balancing allows us to rule in all attested orders 

and rule out all unattested orders in purely structural terms, as I show.  In this 

formulation, an elaboration of Cinque’s LCA-based system with the hypothesis that 

movement must obey the Fundamental Movement Condition  

  Simplifying somewhat for tractability, I assume that the only possible intermediate 

landing sites occur at the boundaries of the overt categories (e.g., movement may deposit 

the N subtree between M and A, but not ‘in the middle’ of M).  I do not make any a 

priori assumptions about how much tree structure is present corresponding to each overt 

category.  Instead, the goal is to use the observed patterns of movement to find out how 

much structure is present.  At the very least, we can discover whether an account along 

                                                
12 “[…] Cinque’s theory requires movement in 13 of the 14 licit derivations, while our alternative does so 
only in six. In each of those no more than a single movement is required, while Cinque’s derivations 
require up to three movements.” (Abels & Neeleman 2009: 67)  That may well be an advantage of their 
theory, but not from the present perspective, where the more movements, the tighter the restrictions on a 
possible base tree which would be balanced by the movements underlying all of the attested, but none of 
the unattested orders. 
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these lines is even tenable: Can the conditions required to motivate all attested orders, 

and to rule out all unattested orders, be simultaneously satisfied by a single base 

structure?  If so, (and, crucially, if the required conditions actually hold of the real DP 

hierarchy), a very strong tree-balancing account of syntactic movement in this domain is 

supported. 

  A crucial assumption here is that movement is always optional.13  Then any 

intermediate derivational stage could survive to the surface, and so we may rule out any 

that would lead to unattested orders without further movement (e.g. AMN).  I also make 

the simplifying assumption that there are no ‘accidental gaps’ in the cross-linguistic data, 

i.e no unattested orders that would arise through motivated movements.  Unattested 

orders are assumed to be ‘actively’ ruled out, in the sense that I assume they do NOT 

arise through motivated movements (at least one step in the derivation of such an order 

must fail to improve tree balance/reduce c-command and containment totals). The list 

below summarizes these assumptions: 

10)  a. Universality: the DP orders of every language represent transformations of a  

  single, common base structure. 

   b. Coherence: Take the D, M, A, N to correspond to coherent partitions of the  

    tree that cannot be broken apart further by movement. 

   c. Monotonicity: All movement within the DP must satisfy the FMC. 

   d. Continuity: Every monotonic derivation corresponds to an attested order. 

                                                
13 This requires some clarification: the optionality is at the level of choosing among languages (rather, the 
derivations instantiated in a particular language).  Within an individual language, of course, the pattern of 
movements is far more constrained – a separate matter from the present cross-linguistic investigation.    
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Within these rather rigid boundaries, the task is to find a shape of base tree (taking the 

base order to be fixed D > M > A > N) that can fit the typological pattern.  It is clear that 

not just any imaginable typology (construed as a choice of some set of attested orders 

from the 24 logically possible relative orders of four elements) could be described in this 

way.  Consider the trivial counterexample below; this typology of two attested forms 

(mirror images of each other) does not admit a tree-balancing account: 

11) {DMAN, NAMD} 

If the set of attested languages consisted of just two forms, mirror images of each other, a 

tree-balancing account satisfying all four conditions would be impossible.  This is so 

because the mirror ordering arises through no less than three movements.  Then, under 

(10c), derivations with just one or two of these three movements would be predicted to 

survive to the surface as attested orders in some languages. An example of a typology 

that could include the mirror order, and at least in principle prove compatible with a tree-

balancing account, is given below: 

12) {DMAN, DMNA, DNAM, NAMD} 

Here, the intermediate configurations in a snowballing derivation of the mirror order need 

not experience further movement.  That is, the first step of snowballing movement inverts 

AN to NA; that can be embedded without further movement, producing DMNA.  

Likewise, the second step turns MNA to NAM; this step need not be succeeded by the 

final inversion, instead surviving as DNAM.  It remains to check (i) & (ii), but at least the 

surface typology does not reveal gaps corresponding to hypothesized derivational stages. 
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5.2.2 Philosophical background 

The present account recalls Boeckx’s (2008) arguments for a parameter-free UG.  There 

is variation in this system, but it follows from under- rather than over-specification (a la 

GB’s parameters) of the linguistic faculty.  We are seeing the stochastic action of a single 

beast, a uniform but unstable stack which may fold in a number of complicated ways.  

The conditions here are taken to hold at a rather abstract ontological level of choosing 

among possible (“downhill”) and impossible (“uphill”) derivations, or equivalently 

attested surface forms in the cross-linguistic data. 

  On this view, syntactic movement has the flavor of a naturalistic process like an 

avalanche.  Consider, say, pouring sand grains into a pile (see, e.g., Ball 1999).  The 

grains will accumulate until a critical slope angle is reached, and at some point thereafter 

as more sand is poured on, an avalanche may be triggered, always ending with a pile with 

a lower slope than before the avalanche (a more stable form, with less gravitational 

potential energy).  In our analogy, the accumulation of structure is provided by Merge, 

and once the conditions for movement can be met (the analogue of the critical slope 

angle), the tree may ‘avalanche’ into a more balanced form (here c-command totals stand 

in as the analogue of ‘potential energy’).  

 

5.2.3 Why look at DP orders? 

The DP makes an ideal choice for this investigation, on several grounds.  First, there is a 

large amount of literature available surveying the cross-linguistic evidence, with a 

reasonably clear view of what orderings are and are not attested in the world’s languages.  
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Thus, the empirical terrain is rather well mapped out.  Second, focusing on just the 

relative orders of four elements (demonstrative, numeral, adjective, noun) constrains and 

simplifies the analytical problem, while drawing also on the body of literature following 

up on and revising Greenberg’s (1963) Universal 20.    

  Finally, there is a theory-internal motivation for this choice: with respect to the 

phase architecture (Chomsky 2000 et seq.), DPs are effectively at the “bottom” of the 

tree, such that we are seeing the syntactic system operating without phase effects 

muddying the picture14.  By focusing on the DP we “factor out” phase considerations, 

allowing us to set aside difficult questions about what happens at phase boundaries.  Is 

the spell-out domain of completed phases forgotten immediately (Chomsky 2000), or 

does it remain accessible during the computation of the next phase (Chomsky 2001)?  

Because DPs typically do not contain further sub-phases (but see fn. 2), we can avoid 

answering these issues.  The ordering patterns observed within DP should give us the 

clearest evidence of (whether, and) how structure influences movement, free from phase-

based complications that would arise in treating ordering within vP or CP.  

 

5.2.4 Inferring movements from surface orders 

Leaving the details to Appendix A, Figure 2 below illustrates the derivations I take to 

underlie the attested DP orders.  In order to fit all of the trees into the diagram, I adopt the 

expedient of shading the subtrees according to their base depth: nouns are black, 

                                                
14 Except in cases where the DP contains, say, a relative clause, a possibility I ignore.  I likewise abstract 
away from possessor constructions, and other recursion within the DP.  Surely that is an option instantiated 
in natural language, but the intuition is that such DP-internal recursion is not typical, nor relevant at the 
level of the present considerations. 



 

 

149 

adjectives, dark grey; numerals, light grey; and demonstratives, white.  Example (3) 

below illustrates, with the tree for the base order DMAN, corresponding to a derivation 

without movement. 

13)        Total nodes:  Depth: 

 Dem          d     u 
  
     NuM         m     t 
 
         Adj         a     s 
 
             Noun       n     -- 
 
For each of the subtrees represented by a triangle above (D, M, A, N), we need a variable 

to represent the total number of nodes, here d, m, a, n.  For each category other than N, 

we also need to track “spinal depth”, i.e. the depth of embedding within that category of 

the next lower category; for d, m, a these are u, t, s, respectively. 

  In Figure 4, derivational pathways are indicated with arrows.  Large, double arrows 

represent (external) Merge operations; smaller arrows indicate Move (internal Merge). 

Note that some surface orders (notably (x), NAMD) have several possible derivations in 

this figure.  For such orders, I insist that at least one derivation be motivated, in present 

terms.  That is, I remain agnostic on exactly which syntactic configuration(s) are actually 

present corresponding to these orders. 
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             l2 nadm       x5 namd 
  x3 namd         
 
           b. dmna            o2 dnam 
 
                    mna                       nam2 
   s. mnad 
                     na            x4 namd 
 
              n 
                        nam1 
           t2 nmad                   o1 dnam       x2 namd 
                 an                   
 
            nma 
                     anm           w2 anmd 
       c.dnma        man 
                          n danm 
                x1 namd 
                      
            r. mand      k andm       p ndam 
                a dman 
    w1 anmd                 l1 nadm 
 
            t1 nmad   d ndma 
Figure 2: Derivations of attested orders considered in this work. 
 
I leave the detailed treatment of unattested orders to the Appendix, simply noting here 

that they require more careful consideration than the attested orders.  This is so because 

rather than trying to rule in at least one derivation, as for the attested orders, for the 

unattested orders we must rule out all derivations.  For attested orders we need consider 

only ‘locally best’ derivations; for the unattested orders we must, in principle, consider 

more ‘exotic’, sub-optimal derivations (though even here we can reduce the combinatoric 

complexity significantly). 
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  For each derivation above, we can apply the Fundamental Movement Condition to 

each movement involved, yielding a new inequality that must be satisfied.  Thus, each 

order induces a set of restrictions on the possible underlying base tree. 

 

5.2.5 The DP Condition 

The goal here is to discover whether there can be a single base DP tree, such that all 

attested orders, and no unattested orders, arise through movements that reduce c-

command totals at the point where they apply (and what such a tree must look like).  As 

we have seen, some orders can be derived in several distinct ways.  In such cases, if the 

order in question is attested, I assume at least one of its derivations of must 

monotonically reduce c-command totals.  For unattested orders, I assume that none of the 

pathways to that order satisfy that condition.  Conjoining (or disjoining, where 

appropriate), we obtain the complicated condition below (see Appendix A for details).15 

14) ((a+1<(s-2)(n-1)) & (m+a<(s+t+3)(n-1)) & (a+m+d-1<(s+t+u-4)(n-1)) & (m+d< 
(t+u-3)(a+n-2)) & ((a+m+d+1<(s-1)(n-1)) | (m+d<(t+u-3)(n+a))) & (m+1<(t-2) 
(a+n-2)) & ((a+m+2<(s-1)(n-1)) | (m+1<(t-2)(n+a))) & (a+m+d+1<(s+u-2)(n-1)) 
& (d+1<(u-2)(a+n+m-3)) & (d+1<(u-2)(a+n+m-1)) & ((a+m+d-1<(s+t-2)(n-1)) | 
(d+1<u(a-1)+(u-2)(n+m))) & ((m+d+2<(t-1)(a+n-2)) | (d+1<u(n-1)+(u-2)(a+m))) 
& (((m+d+2<(t-1)(a+n-2)) & (a+m+d+3<(s-1)(n-1))) | ((d+1<u(n-1)+(u-2)(a+m)) 
& (a+m+d+3<(s-2)(n-1))) | ((d+1<(u-2)(a+n+m-1)) & (m+d+2<(t-1)(a+n))) | ((a+ 
m+2<(s-1)(n-1) & (d+1<(u-2)(a+n+m+1))) | ((m+1<(t-2)(n+a)) & (d+1<(u-2) 
(a+n+m+1))))) & (2(a+n)+d+2>(u-1)(m-1)) & (a+n+d+4>(u-1)(m-1)) & (a+n+d 
+4>u(m-1)) & (n+m+d+2>(t+u-2)(a-1)) & (n+m+d+4>u(a-1)) & (n+m+3>(t-1) 
(a-1)) & (n+d+3>(u-1)(a+m-2)) & (n+d+3>(u-1)(a+m)) & ¬((d+m>a+n+4) & 
((m+n+a-3)(u-2)>d+1) & ((a+n-2)(t-1)>d+m+2) & ((n-1)(s-1)>d+m+a+3)) & 

                                                
15 To be clear, the DP Condition is not to be understood as a proposal about the content of Universal 
Grammar; i.e., I am not claiming that something as complicated as (14) is directly encoded as part of a 
native speaker’s knowledge of language.  Instead, the condition is an expression of the “structural 
diagnosis” obtained by supposing that all movements in the DP improve tree balance in a single, common 
base.  The base must meet the conditions in (14) for this to hold.  Thus, (14) is an artifact of linguistic 
analysis, a way to go from observed surface orders to underlying structure and derivations. 
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¬((((m-1)3>d+a+n+7) | ((a-1)2>d+m+n+7) | ((m+1)2>d+a+n+5) | (a+m+2>n+d 
+4) | ((n-1>d+m+a+7) & (((a+m+2)2>d+n+6) | ((m+1)3>d+a+n+7) | ((m-1)4> 
d+a+n+9)))) & ((d+1)2>n+a+m+5) & ((m+n+a-3)(u-2)>d+1) & ((a+n-2)(t-1)> 
d+m+2) & ((n-1)(s-1)>d+m+a+3)) & ¬(((n-1)(s-1)>a+m+2) & ((n+a-2)(u-2)> 
m+1) & (((a+m)(u-1)>d+n+2) | ((m-1)u>d+a+n+3) | ((a-1)u>d+m+n+3) | (((n-1) 
(u-1)>d+m+a+3) & (((a+m+2)(u-1)>d+n+2) | ((a+m)u>d+n+4) | ((m-1)(u+1)> 
d+a+n+5))))) & ¬((a+m>d+n+4) & ((n-1)s>d+m+a+3) & ((n+a+m-1)(u-2)>d+1) 
& ((n+a-2)(u-2)>m+1)) & ¬(((n+a-2)(u-2)>m+1) & (((m-1)(u-1)>d+a+n+1) | 
(((n-1)(s+u-2)>d+a+m+1) & (((a+m)(u-1)>d+n+2) | ((m-1)u>d+a+n+3))))) & 
¬(((d+m>n+a+4) & ((n-1)(s-1)>d+m+a+3) & ((a+n-2)(u-1)>d+m+2) & ((n+a-2) 
(u-2)>m+1)) & ((a+1>d+m+n+5) | ((a-1)2 >d+m+n+7) | ((m+1)(u-1)>d+a+n+5) | 
((m-1)u>d+a+n+7))) & ¬(((n-1)(s+t-3)>a+m) & (((a+m-2)(u-1)>d+n+2) | ((a-1) 
(t+u-2)>d+m+n+1))) & ¬((((n-1)(t-1)>a+m+2) & ((n-1)(s-2)>a+1)) & (((a+m)(u-
1)>d+n+2) | ((a+1)(t+u-2)>d+m+n+1) | ((a-1)(t-1)>m+n+2))) & ¬(((a-1)(t-1)> 
m+n+2) & ((n-1)(s-2)>a+1)) & ¬(((n-1)(s-2)>a+1) & (((a-1)(t+u-2)>d+m+n+1) | 
((a-1)t>d+m+n+3))) & ¬(((n-1)(s-2)>a+1) & ((n+a)(t-2)>m+1) & (((m-1)(u-1)> 
d+a+n+3) | ((a-1)u>d+m+n+3) | (((n-1)u>d+m+a+3) & (((a+m+2)(u-1)>d+n+2) | 
((m-1)u>d+a+n+5) | ((a+1)u>d+m+n+3) | ((a-1)(u+1)>d+m+n+5))))) & ¬(((m-1) 
(u-1)>d+a+n+5) & (d+m-2>n+a-4) & ((n-1)(s-1)>d+m+a+1) & ((a+n)(t+u-3)> 
d+m)) & ¬((n-1>a+m-4) & ((n+a)(t-2)>m+1) & ((n-1)(s-2)>a+1) & (((a+m-2)(u-
1)>d+n+2) | ((m-1)u>d+n+a+5) | ((a+1)u>d+m+n+3) | ((a-1)(u+1)>d+m+n+5) | 
((n-1>d+m+a+7) & ((n+a+m+3)(u-2)>d+1) & ((a+m+2)2>d+n+6)) | (((n-1)(u-1)> 
d+m+a+5) & (((a+m+4)(u-1)>d+n+2) | ((a+m)u>d+n+4) | ((m-1)(u+1)>d+m+n+7 
))))) & ¬((a+m+2>d+n+4) & ((n-1)2>d+m+a+5) & ((n+a+m+1)(u-2)> d+1) & 
((n+a)(t-2)>m+1) & ((n-1)(s-2)>a+1) ) & ¬(((a+n-2)(t-2)>m+1) & ((n-1)(s-1)> 
m+3) & ((n-1)(u-1)>d+m+a+3) & (((a+m+2)(u-1)>n+d+2) | ((a+m)u>n+d+4))) & 
¬(((a+1)(t-1) > n+m+2) & ((n-1)(t-1)>m+a+2) & ((n-1)(s-2)>a+1) & (((a+1)(u-
1)>d+m+n+3) | ((a-1)u>d+m+n+5) | ((n+m)(u-1)>d+a+4) | ((m-1)u>d+a+n+5)))) 

 
The payoff of going through all this work is that now we can simply “plug in” to this 

formula choices of values for the variables n, a, m, etc.  If the condition holds for a 

particular choice of values, a base DP tree with those structural parameters would be 

“improved” by each step of movement in each attested order, but would be “worsened” 

(or at least, not improved) by at least one step in the derivation of each unattested order. 

  It is not at all obvious that the set of “solutions” to (14) above should be non-

empty.  Indeed, if the present account turns out to be misguided, and syntactic movement 
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in fact has nothing to do with tree-balancing, it would be quite surprising to find that a 

tree-balancing account of the facts is actually possible; that would seem a remarkable 

coincidence.  So finding that the solution set is non-empty is a non-trivial result, and by 

itself lends some plausibility to the basic approach adopted here. 

  In practice, the conditions I derive are extremely complicated, far too complex to 

explore by hand.  To investigate this matter, I have written a computer program to check 

which tree shapes would motivate the movements deriving all attested orders, and no 

unattested ones, in terms of c-command reduction.  I include a table of results from this 

program, and the code itself, in Appendix A. 

 

5.2.6. Direct demonstration for smallest solution tree 

In this section, I demonstrate by brute force that this analysis succeeds.  For the smallest 

overall tree consistent with the algebraic DP Condition (14) above, I explicitly show all 

movements respecting Coherence and satisfying the FMC.  As claimed, all and only the 

attested orders are produced. 
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  *Move blocked by FMC 
  Move permitted by FMC 
  Merge                  Dem  Num  Adj  Noun 
             
                        
 
         l1. nadm              l2. nadm 
   x1. namd             t3. nmad        
                          
                       
           
       d2. ndma     c2. dnma               x3. namd 
                 o2. dnam      
     b. dmna             
           nma2                                   
                                         x2. namd 
      
        na              nam2        
s. mnad            
      n         mna       
                         o1. dnam 
        an            nam1              
           man  
 
c1. dnma       nma1         anm 
                                     w2. anmd 
          
                       n. danm 
                 
                      
        r. mand    a dman   k1. andm       
 t2. nmad               
                                     k2. andm 
                     
                
          t1. nmad    
  w1. anmd            d1. ndma        p. ndam 

Figure 3: Derivations for minimal tree.  
All movements respecting coherence are considered: the result is shown here if the 
movement obeys the FMC; non-FMC-obeying movements are marked with black circles.   
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5.3 Overview of numerical results 
 
In this section, I summarize the numerical results provided in Appendix A.6, obtained by 

running the program in Appendix A.7.  The program runs through all permutations of 

possible values for the node counts and depths of the D, M, A, N subtrees, within limits 

input by the user, and ‘plugs in’ those values to the DP condition, recording which values 

satisfy it.  In other words, the program is designed to find and describe the possible base 

DP trees for which tree-balancing motivates all the attested orders seen in figure 1, and 

none of the unattested orders.  Leaving a list of explicit solutions to later, here I draw 

some broad conclusions about the permitted shape of the base DP tree.   

 

5.3.1 Antilocality 

The upper regions of the tree (D, M, A, containing the demonstrative, numeral, and 

adjective) must each have a spinal depth of at least 3 (and hence, at least 5 nodes).  This 

follows independently from the version of Antilocality predicted by this theory (see 

chapter 6).  That is, we observe movements in the DP which “skip” just one of these 

categories (e.g., carrying the MAN complex to the left of D, yielding MAND order from 

base DMAN).  Recall the Fundamental Movement Condition (FMC), repeated below: 

 
15) Fundamental Movement Condition (FMC):         b     s            a             b 

   Move α only if  (a-1)(s-2) > b+1                         a 
   (a = nodes in α, b = nodes in β, and s = depth of α in β) 
 
Here, we can see immediately that s, the spinal depth of the skipped-over category, must 

be at least 3 to obtain a positive value on the greater, left hand side of the inequality. 
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5.3.2 N is big 

It is also evident from the table that there are many solutions when the value of n (the size 

of N, the region containing NP) is very large (notice that the term n appears on the larger, 

right hand side of each of the inequalities above).  This also makes sense in light of the 

FMC, and the observation that the only movements we seem to find move the NP, or 

something containing it.  Then the factor a in the FMC (the size of the moving category) 

includes n as a term; the larger a is, the easier it is to satisfy the FMC.  We see that 

apparently 9 is the minimum possible value for the number of nodes in N.    

 

5.3.3 D can be big too, and bushy 

That said, it is not the case that N must have the highest node count of any of the tree 

regions; region D, in particular, can be bigger.  The table of results reveals further 

subtleties: region D also permits very  “bushy” structures, something of a surprise.  

Consider again the FMC; for s ≥ 3, we can divide to isolate the a term on the left hand 

side of the inequality, as below: 

16)  a-1 > (b+1)/(s-2)   (for s ≥ 3) 
 
For sufficiently large β, the right hand side approaches b/s.  Note that b and s are both 

structural properties of β (its size and depth, respectively); b/s may be described as 

something like a “bushiness factor” of β.  In general, for fixed moving category α, the 

less bushy the region it moves across, the better.  It is surprising, then, to find a large but 

shallow structure (D) at the top of the tree permitting movement to cross it.  It is precisely 
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the value of this numerical exploration to bring to light surprising conclusions like this, 

where intuitions based on broad predictions might lead us astray. 

 

5.3.4 Spinal cartography 

A number of considerations suggest that we should pay particular attention to base 

structures that are spines.  In fact, this characterization of structure is strongly motivated 

at a derivational level, as argued for instance by Uriagereka (1999) and Narita (2010).  

For those authors, what appears on the surface as a “specifier” or complex left branch is 

treated, within a structure that embeds it, as effectively a single terminal object.  

Moreover, the same conclusion is virtually forced by the particular articulation of 

cartography that underpins the typological investigation in this chapter. 

  It is hardly disputable that the individual positions within a cartographic hierarchy 

can be filled by more or less “internal” material.  So, for example, an adverbial position 

may be filled by a single characteristic adverb, or the same adverb with further 

modification (e.g., an intensifier).  By hypothesis, the same position might host a 

prepositional phrase; very often, it will receive a default interpretation with no overt 

expression at all.  If such variation within embedded (left) branches is visible to the 

embedding cartography, movement triggered by structure should be chaotically 

unpredictable, depending on fine details of individual expressions to such a degree that 

slightly different structures would be likely to produce wildly different results.  That, 

patently, is not the general rule.   
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  However, if we adopt the arguments put forward by Uriagereka, Narita, and others, 

then in fact we expect that the cartography will look the same regardless of the “size” of 

objects that are embedded within that fixed hierarchy.  In fact, uniformity of structure is 

complete if we adopt the further claims of Starke (2004) and Jayaseelan (2008), among 

others, who take the apparent complementary distribution of overt heads and specifiers 

(cf. Koopman’s (1996) Generalized Doubly Filled Comp Filter) to indicate that specifiers 

just are heads, in effect.  In that case, the syntactic structure is effectively identical 

whether the relevant position is “discharged” by a complex object (phrase) or a simple 

one (a head, necessarily present syntactically but perhaps without any overt reflex). 

  The crucial exception to this view of strictly spinal structure is induced by 

movement.  In the present work I suppose that complex left branches formed by 

movement remain visible, at least within the phase in which they move.  We can motivate 

this view of things derivationally.  Recall Uriagereka’s (1999) explicitly derivational 

concerns in proposing Multiple Spell-Out: a complex left branch is built in a separate 

workspace, by hypothesis inaccessible to the right-branching “derivational cascade” that 

embeds it.  However, movement within a single right-branching cascade does not go 

beyond a single workspace: the relevant left-branch structure was not assembled in a 

distinct cascade; it is built as a part of the same cascade within which it moves. 

  If we consider only spines as possible base structures, we arrive at a far more 

restrictive description of the base.  Explicitly, using the program in the Appendix, the 

following Spines are detected as solutions to the DP condition within the following 

parameters: the noun may have up to 31 nodes, and Dem, Num, and Adj may each have 
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up to 11 nodes, in any configuration.  Thinking in terms of terminal positions along the 

spine, we are considering a range of structures with up to 16 positions within the noun, 

and up to 5 positions within each of the other categories.  Here are the distinct spinal 

structures satisfying this condition, within this size range: 

17)  Maximum values for variables <n, a/s, m/t, d/u> =  <31, 11/6, 11/6, 11/6> 
   n = 21, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3  
   n = 23, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3  
   n = 25, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3  
   n = 27, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3  
   n = 27, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3 
   n = 27, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
   n = 29, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3   
   n = 29, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3   
   n = 29, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
   n = 31, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3   
   n = 31, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3   
   n = 31, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
 
We can represent this as below: 
 

18)  
       Dem: 2 terminals 
 
         Num: 2 or 3 terminals 
 
 
            Adj: 2 or 3 terminals 
 
 
 
                  Noun: 11 or more terminals 
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The trend here is fairly clear.  We can foresee that as the ‘beast in the basement’ (the 

Noun region) is allowed to be larger, slightly larger Num and Adj regions become 

possible, and eventually Dem as well may contain 3 terminals, though the number of 

nodes must become quite large to push it beyond that. 

 

5.4. Discussion 
 
In this section, I compare the results obtained numerically from the present account with 

some recent cartographic proposals.  Consider the following hierarchies inferred for the 

DP, by Cinque (2005) and Svenonius (2008):16 

 
19) [Quniv . . . [Dem . . . [Numord . . . [RC . . . [Numcard . . . [Cl . . . [A . . . NP]]]]]]] 

                  (Cinque 2005: 328, his (11))17 
 

20) Dem > Art > Num > UNIT > Pl/SORT > Adj > n > N 
                  (Svenonius 2008: 27, his (19))18 
 
Leaving aside the structure internal to the part of the tree labeled ‘N’ above, these are, in 

fact, generally consistent with the structural predictions made here.  In particular, note 

that the Antilocality requirement, a fundamental prediction of the present approach, is 

confirmed by these authors, who intersperse other categories between D, M, A, and N.  

That much extra structure insures that the D, M, A, and N subtrees, in present terms, do 

                                                
16 See also Cinque (2004), Scott (2002), among many others. 
17 This includes positions for universal quantifiers (Quniv ), ordinal and cardinal numerals (Numord, Numcard), 
relative clauses (RC), and classifiers (Cl).  Cinque also proposes to have additional Agreement phrases 
interspersed among the categories, in part for theory-internal reasons, though he also notes (Cinque 2005: 
321-322, fn 24), following Shlonsky (2004), some evidence for real agreement in these positions. 
18 This adds, to demonstrative, numeral, adjective, and noun, positions for articles (Art), and numeral 
classifiers (UNIT), plural markers (Pl) or sortal classifiers (SORT), and noun classifiers, identified with little 
n (Svenonius 2008: 23). 
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indeed have spinal depth at least 3, as predicted (see 5.3.1). 

  Recall from 5.3.2 that a basic result of the present account is that region N, 

containing the NP, must contain at least 9 nodes. What evidence is there that NP is 

internally complex?  I can think of a number of concerns that suggest this conclusion.  

Apart from some degree of functional structure present there including a “little n” 

category-determining functional head as well as the noun root itself (Marantz 1997), the 

noun itself presumably has a large feature structure drawn from the lexicon: phi-features 

(including at least inherent gender or class), a mark distinguishing count nouns from mass 

nouns, as well as any inflectional or derivational morphology on the noun head.19  

Svenonius (2008) argues that there is an attachment point for idiomatic adjectives below 

nP, thus within N in our terms.  Note further that NP seems to be a crucial “recursion 

point”, allowing introduction of a possessor in Spec, NP, and a (typically prepositional) 

complement as well,20 and the noun could itself be a several-stage compound noun, such 

that at the very least it has a large potential size. 

 

 

 

                                                
19 Note that, for our purposes, such morphology may well reflect further layers of syntactic structure, so 
long as the generalization holds that any such morphology on the noun head “comes along for the ride” in 
the relevant NP movement.  This is true, at least for the cases I am aware of. 
20 Though Cinque (2005: 327, fn 34) points out that complements of N are typically stranded by 
movements of the NP within DP.  Kayne (2000) suggests that these PPs are not true complements, but are 
Merged higher than N.  This fact is somewhat surprising from the present point of view, as we would 
generally predict that another DP within a DP, at least doubling its node count, ought to be carried along for 
the ride for optimal tree-balancing.  But if either DPs and/or PPs are phases, as suggested in much recent 
work, then such structure may be effectively invisible to the higher DP, in which case its movement would 
be irrelevant for c-command minimization at that level.  I leave the issue aside here; it was precisely the 
ability to factor out phase effects that made the DP an appealing choice for the present analysis. 
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5.4.1 On order (p) NDAM 

As mentioned above, I have sided with Abels & Neeleman (2009) in taking the order (p) 

NDAM to be real; Cinque (2005: 323, fn 27) includes it among the attested orders but 

suggests the order may be “spurious”.  The issue is that, given Cinque’s (and my) 

assumptions, (p) is derived through subextraction: A and N move together to the left of 

M, then N moves by itself to the left of D, stranding A. This is troubling from the point of 

view of accounting for movement with invariant principles, since such movement is not 

otherwise well-attested, as Abels & Neeleman note, citing Postal (1972).  Thus, Cinque’s 

account seems to undergenerate (if indeed (p) is real). 

  It is interesting to note, in this regard, that almost all possible base DP trees, which 

would be balanced by the movement in all attested orders excluding (p), are also 

balanced by the movements involved in deriving (p).  To put it another way, the present 

treatment of movement predicts, just on the basis of the other attested orders, that order 

(p) should be ruled in as well.  That seems to be the correct result. 

  Note, finally, that this order requires, within an LCA-based account at least,21 that 

movement must not necessarily create opaque left branches.  The subextraction at issue is 

precisely a matter of accessibility within a complex left branch, namely movement of N 

after movement of the [Adj - N] constituent to the left of Num.  However, we do not run 

afoul of the motivation for External Merge to create opaque left branches; Internal Merge 

does not as such entail a separate derivational “workspace”, in the sense of Collins or 
                                                
21 Compare (5b) above, corresponding to order NDMA.   
For Abels and Neeleman, this order can be derived with 
a single “well-behaved” movement of N alone, as in (5b), 
and head-final ordering of the Num-Adj portion of the  
tree.  The tree at right illustrates the relevant structure: 
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Uriagereka.  In particular, if the structure produced by External Merge is spinal, Internal 

Merge affects two portions of the same “derivational cascade.”  Indeed it seems it must 

be, as discussed in 5.3.4 above.  This leads us to a particularly predictable kind of 

structure, and characteristic transformations thereof.  This is a positive development, in 

light of the overall goal to sharpen the ideas here into testable predictions, and to develop 

a restrictive account of the distribution of movement in natural language expressions, 

within and across languages.   

 

5.4.2 On remnant movement  

Abels & Neeleman point out that Cinque’s account might overgenerate as well.  In 

particular, an LCA-based system can, in principle, derive any relative order of the 

elements with successive leftward movements, including ones whose simplest derivation 

would involve rightward movement. “Consequently, proponents of antisymmetry will 

still need to make a stipulation banning apparent rightward movement (that is, structures 

that are the LCA-compatible equivalent of rightward movement).” (Abels & Neeleman 

2009: 67)   

  For Cinque, the required stipulation comes in the form of a restriction on 

movement within DP to only affecting the noun, or something properly containing it.  

Cinque suggests that this might relate to a ““[…] presumable need for the various phrases 

that make up the ‘‘extended’’ projection of the NP (in Grimshaw’s (1991) sense) to be 

licensed.” (Cinque 2005: 325)  That rules out so-called “remnant movement” (den Besten 

& Webelhuth 1987, Müller 1998, among others), apparently a problem, since such 
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movement is analytically motivated (for LCA-based theories, anyway) in other domains: 

 “The requirement that every movement pied-pipe the lexical head does 
not seem to have a counterpart in the extended projections of other lexical 
categories.  In fact, […remnant movement…] is not just a hypothetical 
possibility, it is a widely used analytical tool[…]” (Abels & Neeleman 
2009: 71). 

 
My account makes no reference to a feature-based need for NP to raise for licensing 

reasons – itself a curious notion, since agreement may achieve the same result.   Instead, 

the motivation is purely structural: NP is (by hypothesis) a large category buried deep in 

the tree, and a mechanism of tree-balancing would be expected to raise it. 

  As I show, the unattested movements can be ruled out, directly, by the very same 

tree-balancing concerns that rule in the full set of attested orders. Note that my theory 

does not rule out remnant movement everywhere; such movements are expected just in 

case the relevant structural conditions are met.  The DP seems to resist remnant 

movements, a fact which follows wholly from tree-balancing if its structure is as required 

– but structures other than the DP may meet the conditions. 

 

5.4.3 A simpler account, with messier predictions 

All of this, I think, demonstrates what may be an advantage of my account: it does not 

rely on interacting, inviolable “principles” in the way Cinque’s account does.  That is, no 

reference is made here to postulated constraints on derivations such as a ban on remnant 

movement, a freezing principle, or the like.  Instead, each instance of movement is 

subject to a single, uniform structural condition regulating whether movement may or 

may not occur (which may be met, or not, depending on details of the tree). Thus, while 
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the superficial typology of movement may be “wilder” under such a theory, movement 

itself is very narrowly constrained (and so are its outputs). 

  Cinque states that “[i]deally, all and only the attested orders should follow from the 

conditions on Merge and the conditions on Move of the type discussed above.”(Cinque 

2005: 328)  In practice, there are many mysteries of DP ordering which Cinque must 

leave unaddressed, including an apparent preference for certain kinds of pied-piping 

within DP (p. 326), and the fact that partial movement of the NP is more marked than 

movement “all the way up” (p. 325).22   

  Compare this with the present account, where all and only the attested orders can 

demonstrably be made to follow from a single condition on movement, namely that it 

must always produce a more balanced tree (one with fewer ‘vertical’—c-command/ 

dominance—relations).  

  That said, a note of caution is in order about what has really been established here.  

The fact that one could make a base DP tree motivating all observed transformations, and 

no unobserved ones, in terms of tree-balancing, is only significant if the required shape of 

DP tree is plausible.  That is, showing that this account could work is not the same as 

showing that it does work; the real test is to check the tree shapes in the solution set 

against detailed cartographic analyses.  

 

 

 

                                                
22 Both of those properties plausibly fall out from tree-balancing concerns as well, given an appropriate DP 
shape, though I do not pursue the matter here. 
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5.5. Conclusions and direction for future research 
 
Let us step back for a moment and take stock.  I have argued that syntactic movement is 

“for” reducing c-command (equivalently, dominance) relations in the representations it 

transforms.  I have shown that a strong account of possible and impossible DP orders is 

tenable in these terms, and derived the conditions that must hold of the base DP tree for 

this to be true.  Appendix A provides further numerical results on tree-shapes satisfying 

these conditions; in the introduction, I provided one such solution, pointing out that the 

required DP structure is very close to current cartographic proposals.  I repeat this sample 

solution here: 

21)      Dem       
                  
 
          Num            
 
            Adj               
 
                 Noun 
 
  
Lest this be overinterpreted, I have not shown that the present account is really “the” 

explanation of the movement facts in this domain.  Instead, what has been established 

here is that a complete explanation of possible and impossible orders is available in terms 

of tree-balancing, so long as the “real” structure of the DP falls within the bounds given 

here.  Much more careful empirical work would be required to verify that the DP in fact 

has the required shape. 
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CHAPTER 6: 
ECONOMY OF COMMAND IN PHRASE STRUCTURE1 

 

6.0  Optimal phrasal shape 

I propose that the characteristic shape of human phrases, as captured by the X-bar schema 

and similar forms, constitutes what we might think of as an optimal packing solution or 

optimal growth mode.  I show that constraining Merge to minimize the number of c-

command and containment relations in growing syntactic representations leads to 

‘projective’ phrasal shapes, exhibiting (tree-structural correlates of) endocentricity and 

maximality of non-head daughters. Thus, a tendency for syntactic structures to pattern 

according to the branching geometry of the X-bar schema (or other “projective” shapes) 

can be explained as an epiphenomenon of economy of command. By “X-bar schema”, I 

mean (1): 

1)    XP       

        ZP       X’     

       X0         YP        

In (1), a phrase XP is comprised of a head X0 composed with one phrase (its complement, 

YP), the resulting object composed with another phrase (its specifier ZP) I take this result 

to be interesting in light of the very widespread endorsement of a rather strict X-bar 

schema in much recent descriptive work, especially within the cartographic project; see 

discussion in Chapter 1.  Shlonsky (2010) summarizes the situation: 

 

                                                
1 This chapter is a revised and shortened version of Medeiros (2008). Some text remains the same, but 
much has been removed, and some new material appears here as well. 
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“Arguably, this configurational schema, known as X-bar theory, is the 
only kind of structure that syntactic representations exploit. Other 
structural options, such as adjuncts to phrases, multiple specifiers of a 
single head, etc., have been experimented with in various ways but 
Cartographic research has, for the most part, eschewed these options, 
retaining only the core structures afforded by the X-bar schema. Indeed, 
Cinque (1999) argues forcefully against the adjunction of adverbials, as 
reviewed below. The core structural relations defined by X-bar theory 
seem to be not only necessary, but sufficient to characterize syntactic 
structure.”  (Shlonsky 2010: 2) 
 

Enumerating all possible recursive templates and counting c-command/containment 

relations in the trees they generate, I show that the best templates (those that grow trees 

with the fewest number of c-command and containment relations) have the shape of 

generalized X-bar projections, in the sense clarified below. The best phrasal template 

places a unique terminal at the bottom of the phrasal template, with ‘slots’ for several 

more objects of the same shape as the full phrase. 

  In the next section, I provide some illustration of what the predicted phrase 

structural forms look like, and examine forms that should be excluded by the present 

account.   

 

6.0.1 Generalized X-bar phrases 

The term “generalized X-bar phrase” is intended as shorthand for a class of optimal 

patterns, differing among themselves in how many self-similar ‘slots’ (phrases) they 

permit. This includes (2), (3), and (4): In familiar terms, (2) corresponds to the geometry 

of the head-complement pattern, (3) to the specifier-head-complement pattern of the X-

bar schema, and (4) to a pattern in which every ‘phrase’ may have two ‘specifiers’.  
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  I include an abstract branching diagram at right, with triangles standing in for 

phrases and filled circles for terminals.  

2) Phrase = [terminal  Phrase] 

 

3) Phrase = [Phrase [terminal  Phrase]] 

 

4) Phrase = [Phrase [Phrase [terminal Phrase]]] 

I will describe these phrasal shapes as “projective”. The generalized format of a 

projective phrase is represented in (5).  

5) Phrase = [Phrase [Phrase …[Phrase [terminal Phrase]]…]                         … 

                       

By contrast, (6) is not projective in this sense: the terminal element is not at the ‘bottom’.  

6) Phrase = [terminal [Phrase Phrase]] 

 
I have avoided the more familiar notation XP = [ZP [X0 YP]], as that encodes 

information beyond the corresponding Phrase = [Phrase [terminal Phrase]].  Specifically, 

the former, but not the latter, requires a notion of projection or labeling, such that XP and 

X0 are explicitly identified: X0 is not just any terminal, it is the terminal for XP, i.e. its 

head.  What is explained in this chapter is only the geometric pattern, with no reference to 

categorial labeling or headedness per se.  Yet there is a clear sense in which the bare 

recursive geometry in (1) is ‘endocentric’: each phrase has a single designated slot for a 

terminal, at the most embedded level of the repeating pattern.  It is only this idealized 
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structural relation between a phrase and its characteristic terminal “slot” that I explain 

here. 

  In the traditional representation of the X-bar schema XP = [ZP [X0 YP]], YP and 

ZP are phrases built according to the same body plan as XP, but with their own heads Y0 

and Z0.  In other words, all the off-branches between the root and terminal connect to 

structures isomorphic to the root; in more familiar terms, all non-head daughters are full 

phrases.2  Understood as a structural property (an isomorphism of idealized shape), this 

holds of “projective” phrasal geometries more generally, as the phrase = [… phrase…] 

notation makes clear.  Yet again, this is not enforced by the assumptions I adopt; I 

explicitly allow that sub-parts of the structure-building recipes I consider may link in any 

(deterministic) order.  Structures with root-like off-branches everywhere on the line from 

root to terminal just happen to emerge as the winners with respect to economy of 

command, from a larger field of phrasal possibilities where in effect “anything goes”.   

  I believe this is surprising and significant. The options for structure-building 

allowed here are quite free; any finitely-defined scheme incorporating terminals into 

indefinitely recursive patterns is considered. Needless to say, only a small minority of 

these patterns ‘look like’ projections. Other possibilities have a repeating phrasal 

template which places terminals at (potentially many) designated locations other than the 

                                                
2 A a word about adjuncts here: as Chametzky (2000) points out, the relatively theory-neutral notion of 
adjunct is not the same as the theory-internal mechanism of (Chomsky-) adjunction used to represent them.  
I side here with the views of Cinque (1999), who takes it that adjuncts, once thought of as loose add-ons, 
with little restriction, an exception to the base phrase structure, are none of those things; in fact are 
remarkably regular cartographic mileposts (and cf Pollock 1989).  Moreover, I take it that say, adjectives 
and adverbs, prototypical adjuncts, are not introduced by an exotic adjunction operation somehow different 
from regular merge.  Rather, I assume with Cinque that such elements are specifiers in a well-behaved one-
specifier X-bar phrase.  
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‘bottom’, or recurse via units different than the ‘top’ of the template, and so on.3 The 

considerations which enter into the investigation are of a purely configurational, 

geometric nature; no notion of ‘head of a phrase’, ‘label’, or other elements of the theory 

of projection are built into the assumptions. Yet something akin to projection (more 

precisely, a structural basis which could readily be mapped to a projection scheme) 

emerges ‘for free’ as an optimal solution. This suggests that the property of projection 

may be an epiphenomenon of ‘blind’ structural optimization. 

  I argue that this geometric property may give rise to linguistic projection as an 

accidental consequence– a happy result, since labeling had been claimed to require 

irreducible complexification of the basic apparatus.  Hornstein (2009) puts it likes this: 

“What of labeling?  This is less obviously what we expect of 
computational operations.  The labeling we see in FL leads to endocentric 
phrases (ones with heads).  There is a lot of evidence to suggest that 
phrases in natural language are endocentric.  Hence it is empirically 
reasonable to build this into the Merge operation that forms constituents 
by requiring that one of the inputs provide a label.  However, there is little 
evidence that this kind of endocentric hierarchical structure is available 
outside FL.  Nor is it obviously of computational benefit to have 
endocentric labeling for if it were we would expect to find it in other 
cognitive systems (which we don’t). This suggests that endocentric 
labeling is a feature of Merge that is FL specific.” (Hornstein 2009: 13) 
 

The upshot is that projection is empirically motivated, but conceptually mysterious.   I 

return to the issue of projection, and whether and to what extent it can be explained by 

the present account, below.   

 

 

                                                
3 Of course, this invites the further question of whether those options are ’linguistically reasonable’, or 
are ruled out for other reasons. I address this matter below.  



 172 

6.1 Local comparison: A first pass 

As a first look at the considerations to be explored here, suppose that a syntactic 

derivation has reached a stage where the following three objects remain to be combined: 

7) X0, AP, BP 

  Here, X0 is a bare lexical item, while AP and BP are internally complex objects 

constructed by Merge. For the purposes of this simplified example, let us ignore any 

distinction between AP and BP. The options for continuing the derivation are these: 

8) [ AP [ X0  BP ]]  (or [ BP [ X0  AP ]]) 

9) [ X0 [ AP  BP ]] 

Is there any basis for choosing between (8) and (9) in terms of their effects on c-

command and containment relations? There is. Let a be the number of nodes in AP, and 

let b be the number of nodes in BP. Since AP and BP are internally complex, a, b > 2. 

When two objects Merge, the number of new c-command relations defined is simply the 

sum of the number of nodes in each; likewise, the operation also creates the same number 

of new containment relations (as the new mother node contains all of the nodes in each). 

Thus, creating (8) defines (b + 1) + (a + b + 2) = a + 2b + 3 new c-command and 

containment relations. Creating (9), on the other hand, allows (a + b) + (a + b + 2) = 2a 

+ 2b + 2 new c-command and containment relations, which is strictly greater. Thus, 

fewer such relations are (potentially) computed at this stage if the derivation ‘grows’ 

according to (8) rather than (9). As argued in more detail below, this gives us good reason 

for preferring (8) over (9) in terms of efficient computation, all else being equal. 
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  Needless to say, this departs from the usual way of thinking about these matters. 

For one thing, it is usually assumed that given some real example, only one of (8) or (9) 

could apply; the other choice would ‘crash’, failing to meet the requirements of the items 

involved. Moreover, only some of the c-command and containment relations defined 

would actually be exploited to carry real linguistic relations. I return to these issues in 

more detail later on. For now, the idea is that if we find as an empirical matter that the 

configuration in (8) tends to predominate as a structural pattern, while configurations 

matching (9) are relatively rare, we might be able to explain that fact in terms of this kind 

of comparison.  

  Note that (8) has the shape of an X-bar pattern of specifier, head, and complement, 

whereas (9) might correspond to a head taking a small clause complement, which seems 

to be a good deal less common (as an iterated pattern). What is at stake here has nothing 

to do with projection; questions such as whether X0 is the ‘head’ of the construction do 

not enter into selecting one form over the other. Rather, the issue is one of branching 

form and its effects on c-command and containment relations. 

  In this light, consider the familiar X-bar schema in (10a). Setting aside the matter 

of projection (the fact that the complete syntactic object shares a lexical category label X 

with its head X0), the relevant aspect for our purposes is that a complex syntactic object is 

formed by the particular recursive pattern in (10b). 

10) a. XP     b.     2   

        ZP       X’     2             1 

       X0         YP       0             2 



 174 

At first, it looks like (10b) is just a matter of ‘bar-level’ notation: 0, 1, and 2 correspond 

to X0, X’, and XP respectively. But there is a way of thinking about (10b) which does not 

require reference to explicit ‘bar-level’ features (a grammatical device that has been 

discarded from Minimalist theory for good reasons). The objects in (10b) are merely a 

convenient notation for describing the particular recursive pattern embodied by the X-bar 

schema. That is, a 0 in (10b) is a terminal (a lexical atom), while 1 and 2 are defined 

recursively: A 1 is an object resulting from Merging a 0 and a 2, and a 2 is the result of 

Merging a 1 and a 2. This is a template for recursion, implicitly expandable ‘all the way 

down’. 

  On the other hand, the option followed in (9) manifests a phrasal format distinct 

from the X-bar shape, as in (11). (11a) gives a familiar linguistic interpretation of the 

shape (a head taking a small clause complement, as in the analysis of the copula by Moro 

2000). What is of interest for present purposes is the abstract recursive characterization of 

the shape in (11b).  

11) a. XP            b.    2   

       X0          SC            0           1 

       YP        ZP     2          2 

To be clear, I am not claiming by the representation in (11b) that small clauses are X’ 

categories, or anything of the sort. Instead, the point is that this structure can be 

characterized in terms of three kinds of geometric object. One is a terminal, X0, labeled 0 

in (11b). The other two objects (1 and 2) are distinguished by their recursive properties. 

The idea is that (11b) is an alternative to (10b) as a phrasal template. If this pattern 
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continued, the nodes labeled 2 at the lowest level of (11b) would them-selves be 

head+small clause structures of the same shape as (11b), potentially ‘all the way down’. 

This would lead to different possible branching forms for linguistic structure. 

  I illustrate in (12) and (13) the results of recursively expanding the X-bar schema 

(10b) and the head+small clause pattern (11b). Expressions characterized by these 

patterns would fill some finite portion of these full branching spaces. 

12)                    2 

               2                      1 

            2        1          0                       2 

            2    1      0      2           2            1 

       2        1    0       2       2        1           2       1    0        2 

13)        2 

    0         1     

         2           2 

      0          1      0      1 

       2                 2     2                2 

For a clearer view of this difference between these patterns, I omit the pseudo-bar-level 

notation and show just the branching forms. 

14) 9 generations of X-bar (Phrase  [Phrase [terminal Phrase]] ) 
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15) 9 generations of HH D-Bar (Phrase  [terminal [Phrase Phrase]] ) 
 
 
 
 
 
 
As is immediately clear, recursive expansion of the X-bar pattern creates a space of 

branching forms that is intuitively ‘denser’ than the space associated with the head+small 

clause pattern. This difference in ‘branching density’ turns out to be simply another 

aspect of the difference between (10b) and (11b), ultimately a part of the same fact 

underlying the local preference for (8) over (9). Put simply, the more densely the space of 

forms generated by a phrasal template branches, the better that phrasal template is for 

reducing the computational burden of c-command and containment relations. The 

relationship between recursive patterns (such as the X-bar format (10b) and the 

head+small clause format (11b)) and c-command and containment relations is the matter 

that will concern us in this chapter. 

 

6.2 Generalized phrases 

What I propose to investigate and compare below are phrase structural patterns, in the 

sense of characteristic aspects in the branching geometry formed by Merge applying 

recursively to lexical items and its own output. The hypothesis being entertained is that 

the forces that govern the process, in the sense of selecting some binary-branching 

structures over others, will give rise to identifiable and repeated tendencies (what might 

be thought of as ‘optimal growth modes’). To determine what tendencies we might 

expect, I generate all possible patterns that could be used as consistent ‘phrasal templates’ 
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to build infinitely recursive structures from lexical atoms, and develop a technique to 

compare them to each other.  

 

6.2.1. A domain for terminals 

One condition that will need to be imposed is that the recursive templates include a 

characteristic place for terminal elements. This makes a good deal of sense on several 

levels. First, the objects are recursively defined, which requires some ‘base step’; it is 

hard to see what aspects of branching structure could provide this other than terminals. 

From another point of view, these are ultimately discrete, finite patterns, built bottom up 

from lexical items; they are ‘about’ structuring terminals into larger structure. Without 

terminals to ‘ground’ the patterns, there can be no distinctive shape, hence no ‘pattern’ at 

all; the only rule would then be ‘anything goes’. 

  The concern in this regard is structures like (16) below, which are ‘maximally 

balanced’, with all terminals at the same depth (or at two adjacent levels of depth. These 

structures provide absolute minimization of c-command and containment relations. 

16)       

 

  

 A0    B0   C0    D0  E0     F0  G0    H0  I0      J0   K0    L0  M0    N0  O0     P0 

If economy of command really does ‘matter’ in the determination of structure, why do we 

not see such forms in natural language? If the only problem were optimizing at once the 

positioning of a full set of elements, we would indeed expect to see something like this. 
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But one guiding theme in minimalist work is the idea that syntactic forms are to be 

explained dynamically, by local (informationally limited) optimization at each step of a 

syntactic derivation. In these terms, the structure above looks decidedly unnatural. To 

actually derive such a form, Merge must apply as symmetrically as possible. This 

involves unbounded ‘vertical’ information flow at each step; the internal structure of 

syntactic objects must be accessible ‘all the way down’ so as to match objects (terminals, 

pairs of terminals, pairs of pairs of terminals, etc.) appropriately. But even this ‘local’ 

(i.e. one Merge operation at a time) matching of object structures is not enough. The 

derivation must be kept in appropriate synchrony across the entire set of parallel sub-

derivations; if one process of merging terminals into ever-larger sets proceeds too many 

steps beyond other combinations occurring in parallel, we may be left with a final stage 

where only unmatched objects remain. Information must thus be shared ‘horizontally’ as 

well, in effect amounting to global pre-planning of the derivation. 

  We can identify a parallel situation in botanical growth, which proceeds by a local 

logic, where notions such as ‘final form’ have no power to shape the dynamics of growth. 

Similar concerns apply to the pattern of Fibonacci spirals in phyllotaxis: If the only 

problem were to pack at once a certain number of elements into a limited space, a 

hexagonal lattice structure would be best. But the observed patterns grow, with the result 

that what we in fact observe is not the best form, but the best growth pattern, a crucial 

distinction. 

  Given the dynamic view of syntax adopted here, similar constraints are expected to 

apply: The best configuration is ‘ungrowable’. Parallel to the phyllotactic case, we expect 
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to observe at best an optimal derivation, not an optimal final representation, because the 

dynamic system is limited by a fundamental locality. This is why (26) is not predicted 

here; no local pattern of growth can produce it. 

 

6.2.2 Possible growth modes 

Such concerns lead us to expect that the considerations that enter into derivational 

choices will be limited by an informational horizon. Recall that one of the problems with 

(16) was that it required syntactic objects to be matched ‘all the way down’. Limiting this 

informational flow means that only some of the recursive structure of the operands of 

Merge is ‘visible’ to optimization concerns. For example, if one level of internal structure 

can be examined, then terminals can be distinguished from more complex objects. 

Allowing two layers of structure to be visible allows further distinctions, which allows 

more internal complexity in recursive patterns, and so on. 

  As an idealization to aid the investigation of these matters, I will suppose that 

whatever pattern might be found will be consistent (i.e. deterministic). A consistent 

recursive scheme carried out within a finite derivational window can be described by a 

finite number of distinct ‘types’ of syntactic object (terminals, or objects recursively 

defined as the result of Merging other terminals or recursively defined objects), which 

‘loop’ into each other in a finite cycle. 
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6.2.3 Notational conventions 

To allow the full range of recursive possibilities, let us simply use the natural numbers to 

represent the relevant distinctions among outputs of different Merge operations, reserving 

0 for terminal elements. Let us furthermore use the largest number in a pattern to 

designate the root symbol (held constant, under the ‘top-down’ formulation discussed 

below). Here, we will take the appearance of the same number on two different nodes to 

mean that the structures so labeled have isomorphic recursive structure. In these terms, 

the simplest recursive pattern (both including terminals and allowing indefinite recursion) 

will be represented as below: 

17)  1      

 1                  0               

Likewise, in this formulation the X-bar specifier-head-complement pattern will have 0-

level terminals marked as 0s, while ‘single-bar-level’ intermediate categories are 1s, and 

‘phrases’ are 2s. 

18)  2      

 2                 1                

           0                 2 

Thus, the numerical designations might be thought of as something like a generalization 

of conventional ‘bar-level’ notation. To be clear, this is not a proposal about reviving bar-

level notation as an explicit grammatical device, thus violating Inclusiveness. Instead, the 

notation is a device for reasoning about possible derivational sequences; the relevant 

information is not to be understood as somehow reified in any way ‘on’ the node, but is a 
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matter of information that is in the way the derivation itself proceeds. If these patterns do 

characterize natural language, that fact presumably emerges from dynamic 

considerations, rather than being explicitly enforced by some mechanism like ‘bar-level 

features’. 

  Insofar as a pattern is consistent, its elements (other than 0) can be characterized by 

what amount to ‘rewrite rules’ (again, this is a matter of investigational convenience, not 

a proposal for a ‘real’ grammatical device).  The general form of these descriptions of 

local binary-branching structure can be described in the following algebraic format: 

19)  i    j  k  i in {1, 2,… n}; j, k in {0, 1, 2,… n} 

That is, an arbitrary non-terminal element i is taken to consist of elements j and k, either 

non-terminals characterized in the same way or 0, i.e. terminal.  The simplest structure 

(17) can be expressed as in (20), and the X-bar schema as in (21): 

20)  1    1 0 

21)  2    2 1 
   1    2 0 
 

6.2.4 Generating all possibilities 

Let us now set to exploring the options systematically. If the ‘derivational window’ is as 

small as possible (i.e. the growth pattern is as simple as possible), then there is only one 

option for how to build recursive structure from terminals. I call this the ‘spine’, for 

obvious visual reasons (intuitively, it generates a uni-directionally branching tree); I will 

likewise use descriptive names for the other patterns for mnemonic convenience. 
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22)  1    1 0  (‘spine’):      1 

                     1               0 

We obviously need at least this much structure to have recursion at all. Ignoring linear 

order (as I do throughout), and requiring the pattern to be built recursively from terminal 

elements and the output of Merge, for distinct objects 0, 1 the other combinations can be 

ruled out (1  1 1 is not built from terminals, while 1  0 0 is not recursive).  

  Moving on to the next level of complexity in sequencing Merge, we consider 

patterns involving two types of non-terminals (equivalently, two-stage sequencing of 

Merge operations). Given the remarks above, we have at first pass 62 = 36 distinct 

options for recursive patterns involving two order-irrelevant Merge rules (i.e. non-

terminal characterizations) defined over three object types (0, 1, 2); for arbitrary n, there 

are (n(n+1)/2)n–1 options. Being a little more careful, we can restrict this further by 

ruling out the following types of characterizations (here, i is an arbitrary non-terminal, n 

is the root-type non-terminal, 0 is a terminal): 

23)  * i     i  i    Does not terminate (DNT) 

   * n    0 0  Is not recursive (INR) 

   * n    n 0  Isomorphic to the Spine 

In words, any object which immediately contains two isomorphic copies of itself cannot 

be recursively constructed from terminals. If the root node (designated as the largest 

number n) consists of two terminals, recursion is impossible. Finally, if the root node 

consists of a terminal and an object isomorphic to the root, it is isomorphic to the spine (1 
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 0 1), hence is not really a member of the higher-order comparison set. The table below 

lists all options for the comparison set built from {0, 1, 2}; non-viable options are in grey.  

 
 2    2 1 2    1 1 2    1 0 
1    2 2 DNT DNT high-headed 

D-bar 
1    2 1 DNT DNT high-headed  

X-bar 
1    2 0 X-bar D-bar (spine) 

 
1    1 0 spine of spines pair of spines (spine) 

 
1    0 0 double-headed 

spine 
INR INR 

 
  Table 4:  Options for comparison set built with two non-terminals. 
 
I have also greyed out the option described as a ‘pair of spines’, which, as the name is 

intended to suggest, consists of two spines merged at the root. It should be clear that this 

is not a repeating structure; the configuration at the root is unique, and thus it is not a 

growth pattern in the desired (basically, self-similar) sense. I illustrate the remaining 

options below, including their repeating ‘molecular’ structure as a partial tree diagram. 

24)  a.  2    2 1   (‘X-bar’) 
    1    0 2 
         b.      2      

   2                  1                

             0                  2   

25)  a.  2    1 0   (‘high-headed X-bar’) 
    1    2 1 
   b.       2      

   0                  1                

             2                  1 
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Options (24) and (25) form a natural pair, as do (26) and (27) below, in that the members 

of the pairs are really the same recursive cycle caught at different times, with a different 

selection of which non-terminal serves as the root. I call the member of each pair of 

patterns in which the terminal occurs nearer to the root ‘high-headed’. See the discussion 

in 4.3.3.2 below.  

26)  a. 2    1 1  (‘D-bar’) 
    1    2 0 
   b.       2      

    1                 1                

             2                 0 

27)  a. 2    1 0  (‘high-headed D-bar’) 
    1    2 2  
   b.      2      

   0                   1                

              2                   2   

This pair (again, really different ‘snapshots’ of the same pattern) has a fundamental 

symmetry; the D in D-bar is meant to stand for ‘double’ for this reason. 

28)  a. 2    2 1  (‘spine of spines’) 
    1    1 0  

  b.      2      

  2                  1                                … 

         0                  1 

29)  a. 2    2 1  (‘double-headed spine’) 
    1    0 0  
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  b.           2      

           2                  1                

             0                   0 

Enumerating all of the options for further comparison sets (allowing three stage Merge 

sequences/three non-terminal types) would be a good deal more tedious. For illustrative 

purposes, I include just one of the options. This represents the ‘projective’ geometrical 

format, and thus is the optimal member of its class (for reasons discussed below, and 

proven in fuller generality in section 6.6). Intuitively, it corresponds to the structures 

described by Jackendoff’s (1977) ‘uniform three-level hypothesis’, an X-bar-like 

structure with two specifiers. In other words, it is a version of the X-bar schema utilizing 

three non-terminal types; hence, ‘3-bar’.  Recall the convention that the highest number 

in the algebraic phrase structure rule representation (40a) is identified with the root.  In 

other words, while 2 was in effect something like a ‘maximal category’ – again, with no 

reference to lexical projection or labeling – for X-bar and other patterns of the same 

complexity, a 3 is a root/maximal category for the class including 3-bar. 

  The X-bar class (built from two non-terminal types) has 6 viable phrase structure 

patterns, including 2 with degenerate subcycles (they contain subpatterns characterizable 

with fewer non-terminal types than the whole pattern).  The 3-bar class has 57, (13 with 

degenerate subcycles, ie non-terminals dominating structures from the X-bar or Spine 

class (two or one non-terminal).  The size of the next class (about 800 distinct patterns) 

and the attendant complexity means an end to practical investigation, with the present 

techniques at least.  
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30)  a. 3    3 2  (‘3-bar’) 
    2    3 1 
    1    3 0 
 
   b.     3 

      3                 2                

            3                 1 

              3                  0 

 

6.3. Comparing growth modes 

Now that we have developed a way of enumerating the possibilities for recursive growth 

modes, we turn to the task of comparing them to each other. Recall the fundamental 

observation underlying this investigation, that building structure in some ways results in 

fewer c-command and containment relations than other options. I have argued that having 

fewer such relations lessens the computational burden for the derivation. The hypothesis 

is that this results in a preference for patterns in the application of Merge that will tend to 

reduce c-command and containment relations. Our goal in this section will be to develop 

a technique to compare the recursive options we have enumerated on the basis of their 

consequences for c-command and containment totals. 

 

6.3.1. Comparison sets based on local complexity 

Each of the recursive patterns we are considering is defined within the bounds of some 

fixed amount of sequential complexity. Some patterns have more or less internal structure 

than others: The spine is ‘simpler’ than the X-bar schema. The X-bar schema requires 
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more in the way of (relatively local) information flow to structure the derivation 

appropriately. Different choices of the size of the derivational window (i.e. the number of 

different types of object, or equivalently, the number of derivational steps in a 

characteristic cycle) will partition the possibilities into natural comparison sets. That is, 

we will compare recursive patterns of comparable complexity to each other. In present 

terms, we will be comparing patterns that can be specified with the same number of 

symbols, so that a comparison set will consist of all the recursive possibilities that can be 

described with numbers from 0 to some fixed n. 

 

6.3.2. Direct comparison redux 

How can one growth mode (recursive pattern) be compared to another? Sometimes the 

comparison can be made quite directly. Consider again the following example from the 

introduction. We are given the problem of combining the syntactic objects AP, BP, and 

X0 via binary Merge. AP and BP are internally complex, while X0 is a terminal. The 

options are these: 

31)  [ AP [ X0  BP ]]  (or [ BP [ X0  AP ]]) 

32)  [ X0 [ AP  BP ]] 

Again, given just the information that AP and BP are internally complex, the first option 

produces fewer c-command and containment relations than the second. Noticing the 

monotonic way in which c-command and containment relations accumulate in a 

derivation (i.e. additively), this local superiority gives us very good reason for preferring 

to apply the pattern manifested in the first option over the second more generally, if we 
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are forced to choose one or the other as a repeated format. Put another way, it motivates 

the choice of the growth mode (33) over (34): 

33)             2     (‘X-bar’) 

           2                  1                

                0                  2 

34)            2     (‘high-headed D-bar’) 

      0                 1                

            2                  2 

However, this sort of direct comparison will not work for the full comparison set they 

belong to. Consider another member of that set: 

35)           2     (‘double-headed spine’) 

      2                 1                

            0                 0 

No local, direct comparison with the previous two patterns is possible, since they take 

different inputs (35 calls for two terminals); in general, where (33) and (34) can be 

applied, (43) cannot. 

 

6.3.3. Indirect Comparison 

To get around this problem, I will proceed as follows. First, it is an inescapable fact that 

these are discrete patterns, ultimately built from some finite number of terminal atoms. 

This suggests an alternative, slightly indirect way to compare different growth patterns: 

Compare the set of tree-forms they can generate for some constant number of terminals.  
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  These patterns implicitly define a class of trees. For example, The Spine can be 

applied to generate (36); that unidirectionally branching structure belongs to the set of 

trees associated with the growth mode (such a tree can be ‘grown’ by the pattern). On the 

other hand, (37) does not belong to the class of trees associated with the Spine.  

36)  [ W0 [ X0 [ Y0  Z0 ]]] 

37)  [[ W0  X0 ] [Y0  Z0 ]] 

For a fixed number of terminals, there are many different binary-branching arrangements 

of that number of elements. Some of those branching structures will belong to the class of 

trees associated with a particular phrase-structure pattern, and some will not. These will 

typically differ in their number of c-command relations. However, for a fixed number of 

terminal elements and a particular recursive pattern, we can identify the best tree(s), 

which contain the fewest number of c-command relations of any of the trees associated 

with a particular pattern. These best trees for a number of terminals then serve as a basis 

for comparison among the patterns themselves (since, as it turns out, this comparison is 

monotonic: If a pattern allows a better tree for n terminals than any competing pattern, it 

also has a better tree for n+m terminals). 

 

6.3.4. The ‘bottom of the tree’ problem 

However, this requires some further clarification. The idea is to find some way to 

compare templates for infinite growth, by isolating them and seeing what happens when 

they are followed as faithfully as possible. The problem is that none of these rules can be 

followed completely faithfully. This is an inevitable consequence of insisting that they 
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allow for indefinite recursion: Any such growth pattern must contain ‘slots’ for other 

objects of indefinitely large size. Yet the objects that manifest these patterns must 

ultimately be finite, with nothing but terminal nodes at the bottom of the tree. As a result, 

some ‘slot’ that calls for a larger object must be filled with a terminal instead. 

  To illustrate, consider the simplest possible growth rule for combining terminals 

into an indefinitely large recursive structure: 

38)        1 

      0            1 

Even in this, the simplest pattern, the very first step in a derivation presents a problem, as 

it does not follow the rule. Any derivation whatsoever must begin by creating a structure 

of the form [ X0  Y0 ]; there simply is no other option. So for a pattern like (38), we will 

accept a structure like (39) as manifesting it as faithfully as possible: 

39) 1 

 0    1 

    0      1 

        0    1 

         0      1/0 

The notation 1/0 indicates where we have deviated from following the growth rule 

(necessarily, since the tree is finite), here including a terminal (0) where the rule calls for 

a complex object (1).  

  However, if we must allow some ‘fudging’ at the bottom of the tree, we can at least 

be faithful everywhere else. Keeping in mind that our ultimate goal is to find some basis 
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for comparing one growth mode to another, we reason that we do not want to ‘truncate’ 

the pattern encoded in the growth rule anywhere not required by the brute fact of 

discreteness. In particular, we will insist that the growth pattern be followed faithfully ‘in 

the middle’ of the derivation, so to speak. This amounts to the formal specification that 

the only deviation from the recursive pattern allowed will be replacing a called-for non-

terminal with a terminal. We rule out non-terminal to non-terminal sequencing that 

violates the pattern, as in (40) below. Here, the notation *0/1 marks the illegitimate 

portion: A called-for terminal has been filled with a non-terminal instead. 

40)      1 

 * 0/1    1 

 

 

6.3.5. Top-down generation 

Note that we have imported a further complication by the convention of assuming that 

one of the non-terminal types (n, the highest of the numbers designating the non-terminal 

types) will be uniformly associated with the root. Formally, this amounts to generating 

the trees to be compared from the root down, allowing any branch to terminate. It is an 

important (if subtle) point that this is not a matter of committing to a top-down view of 

syntactic derivation, though it should be recognized that a Merge-based system need not 

be quite so literally bottom-up as often assumed: 

Thus if X and Y are merged, each has to be available, possibly constructed 
by (sometimes) iterated Merge. […] But a generative system involves no 
temporal dimension. In this respect, generation of expressions is similar to 
other recursive processes such as construction of formal proofs. 
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Intuitively, the proof ‘begins’ with axioms and each line is added to earlier 
lines by rules of inference or additional axioms. But this implies no 
temporal ordering. It is simply a description of the structural properties of 
the geometrical object ‘proof’. The actual construction of a proof may well 
begin with its last line, involve independently generated lemmas, etc. The 
choice of axioms might come last.  (Chomsky 2007a: 6) 
 

 Regardless, in the present investigation top-down generation is an artifact of notational 

choices, rather than a substantive claim.4 Recall that the objects of interest are recursive 

cycles. Understood as time-neutral geometric patterns of recursion, these patterns do not 

properly have a ‘beginning’ or an ‘end’ (other than terminal elements, which can in 

principle appear anywhere in the looping structure as inputs to Merge, but not outputs). 

Their structure is a matter of how outputs from one step loop into the input to other steps. 

But we have kept to the familiar tree-diagram notation, assigning numerical designations 

to non-terminal types. The result is that certain patterns are multiply represented. For 

example, ‘X-bar’ and ‘high-headed X-bar’ are really the same recursive pattern, with a 

different choice for which non-terminal occurs at the root.  

 However, it turns out that a certain orientation of the pattern (fixing one or another of 

the non-terminal types at the root) will consistently provide better results than others. 

Thus for each looping object we can generate a set of alternate versions fixing one or 

another of the stages as the ‘top’, corresponding to the ‘root’ of a tree, and see which are 

                                                
4 In light of this point, the claim made here about ‘projective structures’ needs to be clarified somewhat. 
Represented in the format [ α [ β … [ γ [ X0  δ ]] … ]], the claim is a little too strong. What is motivated 
here is rather the recursive cycle underlying this format. Put another way, even universal strict adherence to 
such a growth mode in reality would not necessitate that the root node be maximal; the recursive cycle 
could be oriented differently at the root, thus showing up as one of the ‘high-headed’ alternatives (such a 
situation would look like a ‘small’ projection at the root embedding an otherwise well-behaved projective 
structure). 
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best. Since the basis for comparison is best performance, this should not present a 

problem in any way. 

 

6.3.6. Some Results from Indirect Comparison 

Figure 2 graphs the growth in c-command and containment relations for several recursive 

patterns. Recall that for each growth mode, there is an associated set of trees generated by 

adhering to the structural pattern consistently from the root down, allowing terminals to 

appear in ‘slots’ calling for non-terminals (required for finite trees). For a given number 

of terminals, a number of trees can be generated by a given pattern. These will differ in 

the number of c-command and containment relations they encode, but for each choice of 

growth mode and number of terminals, there will be a best tree (or set of such trees). A 

‘best tree’ has the fewest possible c-command and containment relations that could be 

produced by that growth mode for that number of terminals. It is these totals that appear 

in Figure 2 (as a function of the number of terminals). 
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Table 5:  C-command relations as a function of terminals in best trees. 

I include in the figure ‘best trees’ in X-bar (34), as well as three other two-layered 

constructional schemes (35-37). I also include the best system utilizing a 4-way 

combinatorial distinction (40), which I call ‘3-bar’ (intuitively, an X-bar-like system with 

two types of intermediate category). The spine (32) forms the upper boundary curve; no 

growth pattern results in worse performance (in the sense of creating more c-command 

and containment relations for a given number of terminals). There is also a lower 

boundary curve, here labeled ‘Max Balance’. This is the number of c-command and 

containment relations in a maximally balanced tree like (26) from section 4.1; the pattern 
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is not the result of any finite growth pattern, but forms the boundary on best-case 

performance. 

  Among the growth modes in its comparison set, X-bar has the best performance: Its 

curve is closer to the best-case lower boundary (‘Max Balance’). The optimal pattern 

from the next comparison class, ‘3-bar’, has slightly better performance (the best trees 

that can be ‘grown’ by that pattern have fewer c-command and containment relations for 

the same number of terminals).  

  To be clear, the figure is meant as an illustration, not a proof. The general result 

that projective growth modes are best is established formally in section 6.6. 

 

6.4. Deriving projection 

As suggested by Figure 2, X-bar is the best growth mode that can be achieved by any 

two-stage scheme for constructing recursive structure from terminals via binary Merge. 

What I call ‘3-bar’ is better still, though it requires more distinctions (more recursive 

complexity, more information flow) to construct. Generalizing, these are examples of the 

‘projective’ format in (51), where X0 is a terminal at the ‘bottom’ of the repeating 

structure, and α, β, and so on are objects themselves constructed according to (41). 

41)  [ α [ β … [ γ [ X0  δ ]] … ]] 

The structural properties of (41) can be captured in our alternate notation as in (42), 

where 0 is a terminal, and n the non-terminal associated with the root.  

42)  n    i  n 
   i     j  n 
   … 
   k    0 n 
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In words: every non-terminal type immediately contains a root-type non-terminal (n), and 

in the chain of generation from the root, through each other non-terminal type, the 

(unique) non-terminal type k that contains a terminal is last in line (i.e., the head comes at 

the bottom of the repeating phrasal molecule). The specifier-head-complement format of 

X-bar theory is one example of such a ‘projective structure’: Specifically, it is (42) with 

n=2. The more optimal ‘3-bar’ system of (40) is another example, this time with n=3. As 

I prove in section 6.6, this is the optimal format for n+1 (i.e. 0, 1, … n) types of category 

(many other less optimal possibilities exist). Intuitively, the idea is as follows. The phrase 

structural possibilities are understood to be (partially) realized by finite expressions, built 

bottom-up by Merge. As such, every recursive pattern must include terminals (0s) as one 

of its structural types. Moreover, no categories are built solely from non-terminals ‘all the 

way down’. 

  Given these restrictions, and the determinacy of the structural characterizations 

assumed, any non-terminal node must dominate a terminal node within depth n, for n+1 

types. The best kind of structure, following the format in (42), introduces terminals no 

closer to the root than forced by this. In essence, introducing terminals too close to the 

root ‘closes off’ branches, forcing complex structure to appear deeper in the tree, where it 

will induce more c-command and containment relations than if it were shallower. The 

format in (42) allows arbitrarily large structures to be as balanced as possible given the 

limitations resulting from finitely many structural distinctions. 

  Note two very interesting properties of (42): 
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43)  a. Every non-terminal immediately dominates a root-type node. 

   b. Terminal nodes and root-type nodes are associated one-to-one; a single    

    terminal occurs at the lowest level of the chain of non-root-type nodes    

    dominated by a root-type node. 

Replace ‘root-type node’ with ‘maximal projection’, ‘terminal’ with ‘head’, and ‘chain of 

non-root types dominated by a root type’ with ‘projection chain’, and we have: 

44)  a. Every non-terminal immediately dominates a maximal projection. 

   b.  Heads and maximal projections are associated one-to-one; a single head   

    occurs at the lowest level of the projection chain. 

That is, the recursive scheme that best minimizes c-command and containment relations 

has geometric properties corresponding to (44a) the maximality of non-head daughters, 

and (44b) endocentricity. Such properties are the essence of the theory of projection. But 

the notions entering into (43) are purely structural ones. Does this ‘derive’ projection? 

Not in the sense of literally providing labels on non-terminal nodes. But it suggests a 

reason for syntactic objects to tend to take the form of structures which are ready-made to 

be read as projections, in that there is a natural one-to-one association in the optimal 

format between larger molecules of structure and unique terminals at their ‘bottom’.  The 

head-phrase relation we think of as projection is recreated here in structural terms. 

 

6.5. On projection 

One issue in syntactic theory that has received considerable attention of late is the nature 

of projection.  Consider, for example, the familiar pair in (1). 
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45)  a. The enemy destroyed the city. 

         b.  the enemy’s destruction of the city 

These two expressions are virtually a minimal pair, at least in terms of their overt lexical 

contents (though many theorists attribute considerable amounts of covert structure to 

both).  Likewise, there is an intuitive semantic similarity, in that both expressions are 

‘about’ the same event in the world, roughly speaking.  Yet they have very different 

properties as syntactic objects.  To give the most trivial example, (45a) may occur in the 

frame (46a) while (45b) may not; conversely, (45b) may occur in the frame (46b), while 

(45a) may not. 

46)   a. John knew that ______.   

         b.  ______ was seen by all. 

Earlier theories attributed this difference to the verbal character of destroyed, as opposed 

to the nominal character of destruction.  On current understanding, the culprits are more 

properly the functional formatives –ed and ‘s, the former a T and the latter a D, 

determining that the expressions containing them are a TP and a DP, respectively (note 

that if further developments should point to some other elements as being the key to this 

difference, the basic picture would hardly be changed).  Moreover, the contents of the 

expressions other than these key elements can be changed while leaving the distributional 

properties basically intact (modulo semantic coherence).  Thus, (47a), like (45a) a TP 

containing –ed, behaves like (45a) in relevant respects (e.g., with respect to well-
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formedness in the environments of (46)); and likewise (47b) parallels the behavior of 

(45b), with which it shares the ‘head’ element ‘s. 

47)  a.  The hero completed his quest. 

         b.  the hero’s completion of his quest 

Thus, syntactic expressions sort into distributional categories largely on the basis of some 

key lexical item they contain.  We say, then, that the expressions are ‘projections’ of 

these ‘heads’.  All of this is, of course, extremely well known; any adequate theory of 

syntax must capture this most basic fact in some way.  

 

6.5.1. What is projection, and what does it do? 

We may well ask several questions at this point. 

Firstly, what exactly is the nature of projection within the syntactic system?  That is, how 

is the property of projection encoded – is it read off of ‘labels’ present on syntactic 

‘nodes’, or determined implicitly by some algorithm applying to inherently unlabeled 

structures, or does it arise in some other way? Secondly, why does human language have 

such a property at all?   

  Within the Minimalist Program, an explicit attempt is being made to reduce to a 

minimum the theoretical machinery deployed to capture the facts of human syntactic 

knowledge.  Given this effort, questions arise as to how – and indeed, whether – to 

capture the facts of projection in terms of constituent structure. 
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  In syntactic theories that assume a rich mathematical structure of trees as the basis 

for phrasal hierarchies, projection can be captured quite naturally by the device of 

labeling non-terminal nodes.  Thus, an example like (45b) could be represented as in (4). 

48)             DP 
 
        DP           D’ 
 
              D         NP          D               NP 
             the                    ‘s 
                           enemy                   N               PP 
                                      destruction 
                      P           DP 
                     of 
                        D           NP 
                     the 
                            city 
 
But such technology is not forced just by the need to capture hierarchies of constituency 

(perhaps the most basic fact of syntax); all that is needed to describe that aspect of phrase 

structure is ‘bare’ sets.  If one takes Minimalism seriously, this may be seen as something 

of a problem.  That is, we would prefer to find that the barest machinery required for 

recursively combining lexical items also suffice to explain the nature of projection; such 

a discovery would be a fulfillment of Minimalist expectations.   

 

6.5.2. Is projection Minimalist? 

On the surface at least, this hope simply fails.  The simplest possible formalism for 

describing the kind of hierarchical combinations exhibited in linguistic constituency is 

the language of sets.  By their nature, sets include no information beyond membership; in 

particular, they give no basis for any asymmetry among their members.  But asymmetry 
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seems to be the very essence of projection: when one lexical item, or complex structure 

built from lexical items, combines with another, one object or the other is ‘more 

important’ in determining the properties of the composite formed by the combination.  Of 

course, projection can be captured in a set-based system with some further assumptions 

and machinery, as in Chomsky’s (1995a) theory of Bare Phrase Structure.  But the point 

is that on the barest assumptions, such further complications are unnecessary, thus a 

departure from minimal/perfect design. 

  In light of the lack of clear conceptual motivation for labeling, the results of this 

work look promising.  Although the one-to-one association of phrases and terminals, and 

the phrasal character of non-head daughters, is only implicit in the optimal forms 

considered here, there is nonetheless a purely structural basis for projection on offer.  If 

this mysterious property of language falls out from optimization of bare tree forms, then 

it needs no extra machinery to encode. That, I argue, is a good thing. 

 

6.6 Proof of the optimality of generalized X-bar forms 

In this final section of this chapter, I reproduce the informal proof given in Medeiros 

(2008) that generalized X-bar patterns (endocentric ones) build trees with fewer c-

command and dominance relations than alternative phrasal arrangements of equivalent 

complexity. 

  Take a recursive pattern P to be defined as above over terminal type 0, nonterminal 

types 1, … n, with properties of determinacy (every non-terminal i branches according to 

a unique rule i  j k, with j, k in {0, 1, … n}, and termination (no non-terminal 
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dominates only non-terminals ‘all the way down’). 

  The reasoning here will involve the infinite tree-space T generated by maximal 

iteration of a recursive pattern P. In such trees, every non-terminal node in the recursive 

pattern will be recursively expanded, and the non-terminals thus introduced will be 

expanded, and so on ‘all the way down’. 

  Now, we may consider mapping nodes in the tree-space T1 generated by one 

pattern P1 to nodes in the tree-space T2 generated by another pattern P2. The idea is to 

find immediate-containment-preserving maps of sets of nodes in T1 to sets of nodes in T2 

such that: 

49) The image of the root node of T1 is the root node of T2, and 

50) If node α immediately contains node β in T1, the image of α immediately 

  contains the image of β in T2. 

Let us say that T2 contains T1 if there is some mapping of the set of all nodes in T1 into 

nodes of T2 meeting this condition, and that T2 properly contains T1 if T2 contains T1 

but T1 does not contain T2. (If T1 contains T2 and T2 contains T1, then T1 and T2 are 

isomorphic, and so are P1 and P2.)  

  We will also consider finite trees within these infinite trees, i.e. contained by them 

in the sense above. For notational clarity, we reserve Ti for infinite treespaces generated 

by maximal expansion of Pi. Clearly, if T1 properly contains T2, every finite tree 

generable by P2 can be generated by P1. We are interested in comparing the optimality, 

with respect to number of c-command and containment relations, of best finite trees (with 

equal numbers of nodes) generated by distinct recursive patterns P1, P2. At the very least, 
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if every arrangement possible under P2 is also possible under P1, but there are 

arrangements generated by P1 more optimal than any arrangement of the same number of 

nodes under P2, we will judge P1 to be more optimal than P2. 

51) Lemma 1: If T1 properly contains T2, P1 is more optimal than P2. 

Clearly, every finite tree generable by P2 can be generated by P1. For proper containment 

to hold, T1 cannot be mapped to T2. The mapping from T1 to T2 fails first at some finite 

depth d (succeeding at all depths less than d); the maximal finite trees in T1 and T2 can 

be mapped to the other up to depth d–1. For the mapping to fail, T1 must have one or 

more non-terminals at depth d–1 that map to one or more terminals at the same depth in 

T2.  

  Then consider the maximal finite tree in T1 of depth d (all recursive options 

expanded to depth d, all non-terminals in T1 at depth d replaced with terminals). This tree 

has fewer c-command and containment relations than any tree in T2 with the same 

number of terminals. One or more of the non-terminals at depth d–1 that were expanded 

in T1 must terminate at that depth in T2. Then some number of nodes in T1 at depth d 

cannot be mapped to corresponding nodes in T2 at the same level, and the same number 

of nodes must appear at depth d+1 or greater in T2; all other nodes correspond. Since the 

number of c-command and containment relations induced by a node is equal to its depth 

in the tree, it follows that any tree in T2 containing the same number of nodes as the 

maximal finite tree of depth d in T1 must have strictly more c-command and containment 

relations. 

  Thus, if T1 properly contains T2, P1 is more optimal than P2: Every arrangement 
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possible under P2 is also possible under P1, but there are arrangements generated by P1 

superior to any arrangement of the same number of nodes under P2. 

52) Lemma 2: The infinite tree space Tp generated by the projective recursive pattern 

Pp defined over some number n of non-terminal types properly contains all 

treespaces Ti generated by distinct recursive patterns Pi defined over the same 

number of non-terminal types. 

To see this, we will need one more concept, that of ‘least path-to-terminal’. A ‘path’ 

leading from node α to node β is the set of nodes containing α, β, and all nodes 

dominating β which are also dominated by α. For any non-terminal node in a tree, we can 

identify the paths of nodes leading to terminals it dominates, and measure the depth of 

those paths. Among these paths, there will be one or more least paths-to-terminals 

(clearly, of depth at most n, for n non-terminal types).  

  Let us consider these paths under the sort of mapping described above. First, in Tp, 

the least path-to-terminal from the root node has length n. Let us call an ‘off-branch’ 

from this path a sub-tree whose root node is immediately dominated by a node on the 

path, but is not on the path itself. In Tp, the least path-to-terminal from the root of any 

off-branch is itself of length n (since any off-branch is isomorphic to the root node).  

  Now suppose Ti is a tree-space distinct from Tp defined over the same number n of 

non-terminal types. First, Tp contains Ti. For this to be false, there must be some finite 

depth d at which the mapping first fails. Find the shortest path-to-terminal from the root 

in Ti (or select one of them, if there are several of the same shortest length). Let us map 

the nodes in this path to nodes in the least path-to-terminal in Tp. This mapping succeeds, 
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because this path is of depth at most n, and the path-to-terminal in Tp is of depth n.  

  Now, for each off-branch from the path in Ti, we can map a least path-to-terminal 

successfully to the least path-to-terminal on the corresponding off-branch in Tp, which 

again is of the greatest possible depth n. And so on, for off-branches of off-branches; this 

exhausts the set of nodes in Ti, since (due to the termination requirement) every non-

terminal lies on some least path-to-terminal. Thus, Tp contains Ti. It cannot be the case 

that Ti contains Tp, because we have supposed that Tp and Ti are distinct. Thus, Tp 

properly contains Ti. Then from Lemma 1 and Lemma 2, Pp is more optimal than Pi; 

since Pi was an arbitrary recursive pattern distinct from Pp defined over the same number 

of non-terminal types, we conclude that the projective pattern is the most optimal. 
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CHAPTER 7: 
THE GOLDEN PHRASE 

 
7.0 Golden syntax 

There are several closely related mathematical objects called golden.  These include the 

quantity variously described as the golden mean, the golden ratio, the golden section, or 

the golden number (this is Phi, τ to mathematicians, the value (1+√5)/2, about 

1.6180339…; sometimes we are interested in its reciprocal “little phi” 0.6180339…), and 

the golden string (a related binary string 10110101… with remarkable properties).  The 

so-called golden angle (the angle of separation between successive growths in the 

dominant, Fibonacci-based patterns of phyllotaxis) is just the golden section measured 

out on the circumference of a circle.1 Both the golden mean and the golden string are 

intimately related to the Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13…).2   

  This chapter is about the “Golden Phrase”, the X-bar schema of specifier, head, and 

complement, widely agreed to be the universal ‘molecule’ of phrase-building, usually 

represented as in (1).  As I will show, this object exhibits “golden” mathematical 

properties.  To put it simply, (1) is the expression, in binary-branching sets, of the same 

theme underlying the Fibonacci numbers, the golden mean, and the golden string.   

1)      XP 
 
         ZP    X’ 
    Specifier 
           X0    YP 
         Head Complement 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 By convention, we take the smaller of the arcs created by the golden division of the circle as the relevant 
angle (i.e. the golden angle is (1 – 0.618…) x 360°, about 137.5°).   
2 Indeed, the golden string is also known as the (infinite) Fibonacci word.	
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Golden may also, in a different sense, indicate some particularly favorable property – a 

“goldilocks” solution, as it were.  I have this very much in mind as well.  That is, this 

chapter is not just an exploration of obscure mathematical facts about the X-bar schema, 

purely for their own mathematical interest.  Rather, I will claim in this chapter that the 

unique properties of the X-bar schema set it apart from other conceivable phrasal 

organizations as a uniquely useful or optimal choice for structuring natural language 

expressions, with respect to several (presumed) desiderata of language design.   

  A priori reasoning about what natural language “should” look like is dangerous 

territory.  A common – and quite reasonable – objection to all of this is that optimality is 

only meaningful once the problem to be solved is fully specified, with optimal solutions 

typically a compromise among ramified and detailed constraints on the system in 

question. Yet while that is surely true, at another level the study of complex systems 

confirms the Turing’s (1952) claim, echoing Thompson (1917), that “certain physical 

processes are of very general occurrence” – notably those involving Fibonacci-based 

“golden” forms, ubiquitous in nature.  This adds immediate interest to the observation 

that the repeated structural motif in the human syntactic system (the X-bar schema) is 

likewise a “golden” form (Carnie & Medeiros 2005, Medeiros 2008), one of several 

Fibonacci patterns observed in the forms of natural language (Uriagereka 1998, Idsardi 

2008, Idsardi & Uriagereka 2009), and leads us to inquire whether whatever is behind the 

natural ubiquity of such phenomena, in other domains, might possibly be at work here as 

well.  If so, this peculiar aspect of human phrase structure would fall under Chomsky’s 

(2005) “third factor”, a fact about language explained by domain-general principles 
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beyond the organism.  See especially Piatelli-Palmarini & Uriagereka (2008) for further 

relevant remarks about the biolinguistic significance of Fibonacci patterns in language. 

  In the context of purported explanation in terms of Chomsky’s “third factor”—what 

Massimo Piatelli-Palmarini describes as a search for “the physics of language”—

considerations at this level of generality take on a particular importance.  As Boeckx puts 

it, discussing Bejan’s (2000) abstract characterization of branching in flow systems, 

“Only the appeal to general laws lends a certain sense of inevitability to the explanation 

[…] a sign that it is not chance, but necessity alone that has fashioned organisms.” 

(Boeckx 2011: 57)   

 

7.0.1 The X-bar schema as recursive template 

What follows presupposes very little that should be controversial.  In particular, the 

machinery of traditional X-bar theory (Chomsky 1970, Jackendoff 1977), including bar-

level features, specifiers as conceptual primitives, and much else that has lately been 

judged suspicious (see Stowell 1981, Muysken 1982, Stuurman 1985, Speas 1990, Fukui 

1995, Starke 2004, Narita 2010, among many others) will not be presupposed.  Instead, 

the perspective adopted throughout is a view of (1) as a recursive template, a purely 

geometric object with no substance beyond its very shape.  On this view, the X-bar 

schema dissolves into a simpler object, depicted below in (2): 

2)  
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In this depiction of the X-bar shape, the black dot is a terminal position; in traditional X-

bar terms, this is the “head” of the phrase, determining its label (I make no such 

assumption here, where this is simply a structural position, no more).  The triangles 

indicate further “phrases”, with the same shape as the whole.  It is this label-free bare 

shape that is the topic of this chapter.   

  Many of the interesting properties of this object only appear when we consider 

recursion, i.e. (indefinite) self-embedding of the X-bar shape within itself. The X-bar 

schema encodes locations for copies of the whole shape at two interior points – the 

specifier and the complement.  This scheme then implicitly defines an infinite shape, 

formed by indefinite iteration of self-embedding.  It will be useful to have a name for this 

infinite shape; I will call this object “the maximal X-bar tree” in what follows.   

  Needless to say, that notion is an abstraction.  We do not find the maximal X-bar 

tree manifested in any real natural language expression.  Rather, natural language 

expressions partake, at best, of imperfect portions of this structure; they are finite, and so 

the non-terminal structure must “bottom out” with all terminals, of course.  Moreover, at 

any level the full local structure of an X-bar phrase may not be present: we may find 

phrases with only heads and complements, and no specifiers.3   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Though there is a way of mapping stacked head-complement configurations to sub-trees of the maximal 
X-bar tree (namely, by placing the complements of the stacked specifier-less phrases along what would 
normally be interpreted as the specifier line, with heads replacing the X’ nodes and their contents).  There 
may even be something insightful to this seeming trick, since it amounts to saying that the relationship 
between a head and its complement is not distinct from the relationship between an X’ node and its 
specifier sister.  If this convention is adopted then any tree built from phrases with 0 or 1 specifiers (and 1 
complement) forms a subtree of the maximal X-bar tree.  In that case, the study of the maximal X-bar tree 
is more directly relevant in understanding linguistic properties. 
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  Even so, I suggest that it is worth examining the properties of the maximal X-bar 

tree.  As I will show, some unique mathematical properties are present there as well as in 

the bare X-bar schema itself, and these carry over in remarkable properties of natural 

language expressions built around the X-bar schema. 

 

7.0.2 Structure of this chapter 

This chapter is structured as follows.  In Section 7.1, I review some well-known 

mathematical properties of the golden mean, and related objects.  As I show there, we can 

unify the description of the Fibonacci numbers, the (polynomial determining the) golden 

mean, and the string concatenation procedure generating the golden string, in terms of a 

fundamental “golden” recurrence relation.   

  In section 7.2, I show that the X-bar schema manifests the natural syntactic 

interpretation of the same fundamental recurrence relation underlying the golden mean 

and related objects.  As a result, the maximal X-bar tree exhibits Fibonacci numbers of 

category types at successive levels of the tree. A number of further “golden” properties 

follow, which are taken up in later sections. 

  In section 7.3, I propose that the X-bar format represents a dynamic “minimax” 

solution to conflicting requirements on syntactic computation.  On the one hand, as 

emphasized by much recent Minimalist work, there is reason to expect syntactic 

processes to be very simple and local; in practice, this translates to a preference for 

spinal, head-complement structure as the ideal syntactic form.  On the other hand, this 

thesis motivates the idea that the opposite kind of structure (what I call the Bush) is ideal, 
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with respect to minimizing the burden of long-distance c-command and dominance-based 

computations.  I point out that, within its phrasal horizon, the local form of the X-bar 

schema literally spans the gap between the spine and the bush; it is, we might say, the last 

spiny bush, and the last bushy spine.  In the last part of this section, I observe that, among 

the set of generalized X-bar schemas, each globally best (providing the bushiest overall 

trees) among arrangements of matched complexity, the one-specifier X-bar schema is the 

last to also be locally best in its field.   

  In section 7.4, I turn to exploring the fractal properties of the X-bar schema.  

Interpreting binary branching as geometric halving of a line segment, a phrasal pattern 

can be interpreted as a recursive line-division algorithm.  Interpreting the X-bar schema 

in this way, I show that it is the simplest kind of binary-branching scheme that produces a 

fractal image on the line; in fact it yields an asymmetric Cantor set, technically a multi-

fractal.  I remark that the dimensionality of this object is “golden” (specifically, the 

Hausdorff dimension is log2(Phi)).   

  In section 7.5, I show that the X-bar form exhibits “golden” growth in yet another 

sense.  I define a notion of “growth factor” for abstract phrase structural patterns, and 

show how to compute it directly for any conceivable recursive pattern.  The growth factor 

of the X-bar form, in these terms, is the golden number Phi.  Finding the growth factor 

requires us to formulate phrase structure patterns as matrices, a technique with 

considerable utility.  I briefly explore the matrix forms for phrase structure classes of 

increasing complexity, and note some mathematical generalizations of interest.   
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  Section 7.6 concludes the chapter.  I review the terrain we have covered, and point 

out some overarching themes.  I also return to the question of how this syntactic pattern 

might relate to broader phenomena in nature, including brain properties.  Eventually, it 

might be hoped that this investigation might point the way to a deeper understanding of 

the mechanisms that underlie syntax, though this chapter goes no further than an 

exploration of the narrowly syntactic domain.  Nevertheless, even at this isolated level of 

description, we can see that the X-bar form has a distinctly natural, perhaps even 

inevitable character. 

 

7.1 A brief introduction to “golden” mathematics 

In this section, I explore some simple mathematical properties of the family of “golden” 

objects.  These include the Fibonacci numbers, the golden mean, and the Golden String.  

As I will show, these objects manifest a common kind of recurrence relation, though 

interpreted differently in each case.  In the next section, I follow up by showing that the 

X-bar schema manifests the same “golden” recurrence, under a syntactic interpretation. 

 

7.1.1 The golden mean 

The Golden number (aka the golden ratio, the golden section, the golden mean) is the 

quantity x > 1, such that when one divides x into two smaller lengths, 1 and x-1, the ratio 

of the larger to the smaller portion is equal to the ratio of the whole to the larger section 

(see for example Schroeder 1997:5 and Livio 2002: 103).  We can represent this 

geometrically as (3) below. 
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3) x/1 = 1/(x-1)         x 

                1          x-1 

By multiplying both sides by (x-1), we get this: 

4) x2 – x = 1 

(4) can be rearranged to this standard polynomial form: 

5) x2 – x – 1 = 0  

This equation has two solutions: 

6) x = (1–√5)/2, or (1+√5)/2 

We are interested in the positive value, which is approximately 1.618, called Phi.  

Sometimes we will be interested in its reciprocal, called (little) phi, about 0.618; note that 

the identical series of digits after the decimal in Phi and its reciprocal phi is no accident, 

but an expression of the defining “golden” property.   

  Finally, note that we can rewrite the polynomial (5) defining the golden mean as 

below.  This will be significant; as we will see, a parallel relation crops up in other 

guises, in the recurrence relations describing other “golden” objects. 

7) x2 = x1+ x0 

 

7.1.2 The Fibonacci numbers 

As we will see, the golden mean is intimately linked with the Fibonacci sequence and the 

Golden String (also known as the Fibonacci word).  In this section, I review the 

properties of the Fibonacci numbers that will be relevant below. 
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  The Fibonacci numbers, named after Leonardo da Pisa, though known earlier, are 

the following sequence of integers: 

8) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … 

One property of this sequence is that, as it continues, the ratio of adjacent elements 

approaches the golden mean (Schroeder 1997: 4).  To draw this out, below I show the 

ratios of the first few numbers in the sequence, which (slowly4) converge to 1.618… 

9) 1/1, 2/1, 3/2, 5/3, 8/5, 13/8, 21/13, … 

         1, 2, 1.5, 1.666…, 1.6, 1.625, 1.615…, … 

Besides just listing them, we can describe these numbers through a recurrence relation, as 

below.  In words, each Fibonacci number (an) is simply the sum of the two previous 

numbers in the sequence (an-1 and an-2). 

10) an = an-1+ an-2 

The Fibonacci numbers have a number of interesting mathematical properties, and appear 

in numerous domains in nature, most famously in the growth of plants.  For example, 

pinecones and sunflowers typically show geometric arrangements of elements (e.g., 

scales on the pinecone, or florets in a seedhead), such that connecting adjacent elements 

produces two sets of spirals, with a Fibonacci number of clockwise spirals and an 

adjacent Fibonacci number of counterclockwise spirals.  The process that leads to this 

pattern is now relatively well understood, from a mathematical point of view (see e.g. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  The Fibonacci numbers provide successive best approximation to the golden mean for 
numbers their size, though that number is itself the hardest of all numbers to approximate 
with small fractions; it is in this sense the “most irrational” number (Schroeder 1997: 4).  
In the theory of continued fractions, the Fibonacci numbers are the convergents of the 
golden mean (Livio 2002: 103). 
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Levitov 1991, and much subsequent work), as well as at a physical level (see especially 

Douady & Couder 1992).  This is not the place to expound on this fascinating topic, but 

see Uriagereka (1998) for relevant discussion. 

  As we can see, there are two components to this description of the Fibonacci 

numbers: the recurrence rule, and a particular choice of “seed values” to begin the 

sequence.  Noting this, we might investigate sequences obtained by making a different 

choice of seed values, but applying the same recurrence relation.  The Lucas numbers are 

one such series:  

11) (2,) 1, 3, 4, 7, 11, 18, 29,… 

This sequence also obeys the same recurrence relation as the Fibonacci sequence (i.e., for 

an a Lucas number, an = an-1+ an-2).  The Fibonacci sequence begins with initial values (0, 

1,).  Note that choosing (1,1) or (1,2), or any other adjacent pair of successive Fibonacci 

numbers, will generate (the remainder of) the same sequence.  If one chooses different 

“seed” values, one can get different sequences.  Lucas is the first/simplest variant of the 

pattern, “grown” from seed values of (2, 1) (or (1,3), (3,4), or (4, 7), or any other adjacent 

pair from the Lucas sequence), the smallest choice of seed values that does not produce 

the Fibonacci sequence.  In phyllotaxis, patterns with Lucas numbers of spirals are the 

next most common spiral pattern after the Fibonacci patterns (Jean 1994). 

  As with the Fibonacci numbers, as the sequence continues the ratio of one Lucas 

number to the previous Lucas number converges on Phi (1.618…); in fact this is true for 

any choice of seed values for the recurrence relation above (other than (0,0), for which 
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the ratio of successive terms is undefined).  The essence of the “golden” property here, it 

seems, lies in the recurrence rule, not in what it applies to. 

 

7.1.3 The Golden String 

Related to the golden mean and the Fibonacci numbers, there is a binary sequence called 

the Golden String.5  I produce the first portion of the sequence below: 

12) 1011010110110… 

The Golden String is built by a recurrence relation parallel to the golden polynomial, and 

the Fibonacci addition relation, but construed as concatenation: 

13) sn+2 = sn+1 + sn+0  

That is, successively longer portions of the Golden String can be grown by concatenating 

shorter portions.  In particular, we start with “seed” strings 1 and 10 as s0 and s1, 

respectively, and build longer portions as described by the string recurrence rule above.6  

I illustrate the construction of longer portions of the golden string by this method below: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This sequence is also called the Rabbit sequence (e.g., in Shroeder 1997:315); the Fibonacci word is often 
taken to be this sequence with 1s and 0s interchanged, the “binary complement” (i.e. 010010100…).  These 
are sequences A005614 and A003849, respectively, in the online encyclopedia of integer sequences 
(http://oeis.org); as should be clear, what is important is the distribution of digits in this object, not the 
identities of those digits.	
  
6 This line of thinking invites us to consider “Lucas strings”, built by different seeds subjected to the same 
concatenation rule.  The Golden String is “grown” from adjacent seeds in the series 0, 1, 10, 101, 10110, 
etc.  We can grow a distinct series if we start with, say, 1 and 101: 1, 101, 1011, 1011101, 10111011011, 
and so on.  Note that, just as this kind of recurrent string-generating process grows Fibonacci length 
portions of the Golden String, with these seed values we get Lucas number lengths.  The Golden String can 
be interpreted geometrically as a “cutting” sequence, specifying the order in which a line of constant slope 
(in this case, Phi) passes units on the y and x axes (http://www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fibonacci/fibrab.html#gen2).  The Lucas string described here is also a cutting sequence in 
this sense, this time for a line with slope 1+Phi = Phi2. 
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14) 1, 10, 101, 10110, 10110101, 1011010110110, 

101101011011010110101, … 

Pleasingly, the strings built by this procedure themselves have lengths which are 

Fibonacci numbers.  That is, in (13), the string lengths are 1, 2, 3, 5, 8, 13, 21, etc. 

  Before moving on, there is a further property of the golden string that is worth 

noting.  Due to its self-similar construction, there are a number of self-generating 

procedures for the golden string (distinct from the iterated string concatenation shown 

above), such that reading the sequence left to right generates larger scale left-to-right 

structure.  The pseudo-code algorithm below is one example (this can be found on Ron 

Knott’s site cited above, or here: http://www.worldofnumbers.com/em118.htm). 

15) {examine the value at a pointer.   
       If val=1, append 10 to the end of the string. 
       If val=0, append 1 to the end of the string. 
      Move the pointer one space right.} 
      Repeat.  
 
Beginning with just the first two digits of the sequence (10), with the pointer on the 

second digit (0, pointer indicated by underline and bold), we have this: 

16) 1 0 

Since the pointer is at 0, according to (14) we add 1 to the end and move the pointer. 

17) 1 0 1 

Now the pointer is on 1, so we add 10 and move the pointer. 

18) 1 0 1 1 0 

And so on: 

19) 1011010, 10110101, 1011010110, 10110101101, 1011010110110, etc. 
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The Golden String thus has a fascinating kind of ‘vertical’ self-similarity at many scales; 

portions of the sequence at a small scale describe the structure at a larger scale.  As a 

result, we may say that a small portion of the sequence encodes the very procedure used 

to compute a larger portion of the sequence.  

  Although I do not pursue the matter here, I will remark that this might be 

significant in light of the double articulation of language noted since antiquity: its dual 

life as a linear outer form, and a hierarchically-structured inner form (in simple terms, a 

natural language expression is simultaneously a string and a tree).  This object, in a sense, 

brings its own double articulation with it; the projection of a syntactic form from its 

sequence is inherently already there.  In other word, there’s already a tree in this string.  

If it can be shown that the golden string itself in some way characterizes the surface 

forms produced by adhering to the X-bar schema7, we might gain some insight into the 

nature of the real double articulation of natural language.  I set this aside in what follows, 

returning to the unifying theme of a golden recurrence relation.  

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7 Indeed this is true, in several respects.  In Medeiros (2011) I noted that the golden string can be “read off” 
a maximal X-bar tree truncated at a fixed depth, in several ways.  For example, the sequence of most-local 
specifiers and complements follows the golden string, as does the sequence of head positions, if the latter 
are marked for whether they occur on the bottom line of the tree or not.  Finding the golden string in the 
“bottom-ness” of heads is particularly intriguing, in light of the proposal that deepest heads are phrasal 
stress peaks (Chomsky & Halle 1968, Bresnan 1971, 1972, Cinque 1993).  In those terms, the golden string 
property should be visible in the phrasal stress contour, indicating hierarchical properties in easily-
detectable string properties.  One would then want to examine productions of the implied “golden 
grammar” (and alternatives) other than maximal truncated trees; preliminary investigation reported in 
Medeiros (2011) indicates that such a grammar has lowest ambiguity among alternative binary grammars 
of equivalent complexity.  I leave further investigation of such matters to future work. 
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7.1.4 Golden recurrence 

I repeat below the essential recurrence relations characterizing the polynomial specifying 

the Golden Number, the Fibonacci (and Lucas, etc.) numbers, and the Golden String. 

20) x2 = x1 + x0 

21) an+2 = an+1+ an+0  

22) sn+2 = sn+1 + sn+0  

To make the comparison complete, note that we can in fact write, for the “golden” 

polynomial (19) above, the matching general form below (because the factor xn can be 

“divided out” from both sides). 

23) xn+2 = xn+1 +  xn+0 

Seeing this parallelism of form, we might expect a “golden” syntactic structure to obey 

the following syntactic recurrence relation, where SOn is interpreted as the number of 

syntactic objects of a given type (e.g., heads, or XPs) at depth n in the tree. 

24) SOn+2 = SOn+1 + SOn+0  

In fact, as the next section details, exactly this relation holds, in a tree built by maximal 

expansion of the X-bar schema.  This gives us a pleasing and direct way of expressing the 

idea that the X-bar format is the “Golden Phrase”. 

 

7.2 Golden recurrence in the X-bar schema 

In this section, I point out that the syntactic recurrence relations in the X-bar schema are 

exactly those which manifest the “golden” recurrence relation discussed at the end of the 
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last section.  In particular, for various kinds of syntactic objects as defined relative to the 

X-bar form, we will see that the relation below holds: 

25) SOn+2 = SOn+1 + SOn+0  

That is, the number of objects of any type, on some level of the tree, is simply the sum of 

the number of such objects on the preceding two lines. 

 

7.2.1 Fibonacci numbers of syntactic categories 

As noted in Carnie & Medeiros (2005), the golden recurrence relates the number of X-bar 

type objects on one line of the tree to the number of such on previous lines.  The X-bar 

schema incorporates three kinds of branching object: a terminal, and two distinct kinds of 

non-terminals (i.e., XPs and X’s, in traditional terms).  As indicated in the diagram 

below, with respect to each of these object types, relation (24) holds). 

26)              XP  X’   X0 
                AP         1   0   0 
 
            BP               A’      1   1   0 
 
          CP             B’          A0             DP    2   1   1 
 
    EP  C’    B0     FP             GP        D’   3   2   1 
 
        HP  E’  C0   IP     JP    F’       KP  G’  D0  LP   5   3   2 
    …  …  …   …     …   …      … …      …  Fib(n) Fib(n-1) Fib(n-2) 
  
We can understand why the relevant recurrence relation holds, in the following terms.  

On any line of this expansion, any phrase is either a specifier or a complement of a higher 

phrase; there is no other source of new phrases.  There is one specifier for each phrase on 

the previous line, and a complement for each phrase on the line previous to that; thus, the 
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number of phrases on level n is the sum of the number of such on levels n-1 and n-2, the 

desired relation.  It follows that the number of X’ and X0 objects must follow the same 

sequence, since they track the number of phrases on the line above, or the line above that, 

respectively.  Of course, not only do the category types fit the recurrence relation, they 

moreover fall into the Fibonacci sequence8.  See Medeiros (2008) for further 

consequences. 

  Raising our sights a bit, this section has demonstrated a substantive sense in which 

the X-bar schema is a golden syntactic form.  In particular, it instantiates the same 

recurrence rule that underlies the golden mean, the Fibonacci numbers, and the golden 

string, but this time understood as a syntactic recurrence relation.  As we will see, there 

are further relationships between the X-bar phrasal organization and golden mathematics.  

In the next section, I discuss the idea that this syntactic format represents a kind of 

minimax solution to conflicting desiderata of phrase structure. 

 

7.3 The X-bar schema as minimax solution 

In this section, I return to the notion of two opposite “poles” of binary-branching 

syntactic form, the Spine and the Bush, that has run throughout this work.  In this section, 

I suggest that the X-bar format is a kind of minimax resolution of irreconcilable 

requirements on syntactic form, favoring each of the two poles.   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8 Juan Uriagereka (p.c.) points out that one could define “Lucas” syntactic forms, by 
analogy with the relationship of the Lucas numbers to the Fibonacci numbers.  See 
section 6.5 below for some relevant remarks. 
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  While the Bush is maximally symmetric, and the Spine is maximally asymmetric, 

the X-bar form is, in a sense, uniquely antisymmetric; Kayne (1994) motivates (a version 

of) the X-bar format9 in terms of antisymmetry of c-command.  The Spine is achieved by 

maximally local determination of form; each step of the derivation looks just like the last, 

involving the Merge of a terminal with a complex syntactic object.  The Bush can only be 

built by maximally costly processes sensitive to the global form (see below).  The X-bar 

form is minimally antilocal; just “one step” more complex than the Spine.  Between the 

two poles of monolithic regularity, it represents a kind of optimal compromise in the 

most irrational form (quite literally, via its connection with the golden mean, the most 

irrational number). 

  There is a sense in which the X-bar schema represents the best (perhaps even 

inevitable) dynamic resolution of fundamentally orthogonal desiderata for phrase 

structure10.  This can be understood as a push and pull between local and global forces.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9 In Kayne’s system, the one specifier shape corresponds to a limit of one on phrasal adjunction. Note, 
however, that Kayne’s formulation also permits indefinitely deep head adjunction, not considered here, and 
moreover requires unary branching.  See that work for details.  
10 This recalls Binder’s (2008) suggestion that Fibonacci/golden patterns in nature typically reflect 
“dynamic frustration”, the situation of a system subject to fundamentally opposed tendencies.  Consider the 
case of phyllotaxis, where we might say that the two opposing tendencies are (i) the repulsive dynamics 
between the individual elements on a local scale, and (ii) the growth along the axis of the meristem.  When 
the stem growth (ii) dominates, the degenerate distichous pattern arises as the “polar” solution: each growth 
is only repelled by the very last, and so is placed 180 degrees away.  This is the pattern of, say, a palm 
frond, with alternating elements forming a plane collinear with the meristem axis; note that plants with 
distichous growth exhibit significant spacing between adjacent growths.  On the other hand, if there was 
essentially no stem growth, and a field of mutually repelling growths sprang at once from a uniform field of 
large extent (i), we would expect them to pattern according to a hexagonal lattice, the shape of a fly’s eye 
or a honeycomb.  The Fibonacci spiral mode, the dominant form in the plant kingdom (cf Jean 1994), 
robustly arises when new growths appear one-by-one at the meristem fast enough, relative to growth of the 
stem, to be “repelled” by more than one previous growth (so-called whorled modes typically exhibit double 
Fibonacci (or Lucas) numbers of spirals, and form when two growths appear at once in the meristem; cf 
Snow & Snow 1962).  The Fibonacci-based form appears to be a robust minimax solution to the “problem” 
of growth, essentially inevitable for a broad range of growth conditions (see especially Douady & Couder 
1992).   
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At a local level, it is desirable for each step of the computation, examined individually, to 

be as “minimal” as possible – requiring the fewest sub-operations and abstract memory 

resources.  But globally (in the cost of long-distance hierarchical computations), there is a 

“force” favoring bushier trees. 

  These two tendencies are irreconcilable.  To build the best possible global tree 

requires the worst-possible complexity of local computation to achieve via bottom-up 

structure building.  The essential problem is that perfectly bushy trees are perfectly 

symmetrical; to build a perfectly symmetrical tree bottom-up, one must merge objects of 

perfectly matched size.  Matching size requires indefinitely deep search to decide each 

step of structure-building.  

 

7.3.1 Local computation, but not too local 

Maximally local and maximally simple computation keeps to the head-complement form 

{X0, YP}; these concerns favor the Spine.  A considerable amount of recent work 

converges on the idea that unidirectionally-branching “spinal” structure is the ideal form 

for syntax (see, e.g., Chomsky 2007, Narita 2010, among a large literature, and as 

discussed earlier, Yngve 1960).   

  The essential motivation for this preference is that such trees are as easy as possible 

to build.  The structure-building recipe involved is as simple as possible to achieve 

discrete infinity; see section 6.5 below for further discussion. They also appear to be 

optimal for the problem of determining the label, if that is accomplished by search (cf. 

Cecchetto & Donati 2010): the search for a label is as shallow as possible, and 
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unambiguous beyond the first step.  Uriagereka (1999) pursues a different advantage of 

spinal structure, namely simplicity of linearization.  The reader is referred to those works, 

and references therein. 

  However, as noted throughout this work, there is a problem with the Spine: it is the 

worst possible global structure, with respect to the accumulation of long-distance 

relations.  See Chapter 2 above for further discussion. 

 

7.3.2 Optimal trees, but not too optimal 

On the other hand, different binary-branching hierarchies incur different costs with 

respect to the computation of long-distance dependencies over those hierarchies.  On that 

metric, the Bush is the most economical scaffolding, minimizing the number and length 

of c-command and dominance-based relations, the hierarchical pathways for 

computations implicit in crucial properties of expressions. 

  As noted above, the problem with this kind of structure arises when we actually try 

to build it.  It is a maximally symmetric form; in terms of structure-building, that 

implicitly requires keeping track of the size of various objects that have already been 

built.  Information about every previous stage of the derivation must remain visible in its 

entirety to every subsequent step.   

  The structure-building problems involved are even more severe than they seem at 

first.  The following simple example illustrates that not only must the interior structure of 

the operands be checked, but in fact there must be a kind of global coordination of sub-

derivations as well.  Suppose that the goal is to assemble an arbitrary number of terminal 
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nodes into a structure as close as possible to the ideal of the Bush.  In this case, we are 

supplied with an input of five terminals. 

  The first stage of the derivation must, of necessity, Merge two terminals.  Suppose 

that the next step also Merged two terminals.  The derivation to this point can be 

represented schematically as follows: 

27) Start: 

      Step 1: 

      Step 2: 

 

We must be careful in taking the next step.  If we choose to Merge the two matching 

objects (the rule of thumb for building symmetric trees), the derivation proceeds as 

follows: 

28) Step 3: 

  

      Step 4: 

 

This results in a tree with 18 total c-command relations.  The better option is to proceed 

as below, where we break the matching heuristic, Merging a terminal with a pair of 

terminals, rather than the merging the matching pairs of terminals.  This creates the 

bushiest tree possible, with only 16 total c-command relations. 
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29) Step 3’: 

  

      Step 4’: 

 

 

Building the bushiest possible tree for a given number of nodes involves a global 

coordination of derivational steps; in particular, the progress of various sub-derivations 

must be kept in appropriate synchrony.  As should be clear, this is the most complicated 

kind of structure-building procedure.  What is desirable, it seems, is a compromise that 

does not require unboundedly large resources to decide what next step to take, yet at the 

same time builds bushy trees.    

 

7.3.3 The last bushy spine, the last spiny bush 

Note what is special about the X-bar schema: within its phrasal horizon, it is the treelet 

with three terminals and two non-terminal nodes.  This structure straddles the gap 

between bush and spine: it is the only possible structure with this amount of material.  It 

is, we might say, the last spinal bush (or bushy spine). 

  Explicitly, the skeleton of the X-bar schema is the object below: 

30)  
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As should be clear, this is the largest piece of binary-branching structure that is 

simultaneously the best realization possible of the ideals of the bush and the spine.  For 

this object, and smaller ones, the distinction between spine and bush does not exist.  This 

object literally bridges the gap between the two poles of binary-branching structure. 

 

7.3.4 The largest endocentric form which is still locally best 

As remarked in Medeiros (2008), within any class of phrase structural patterns of 

equivalent local complexity, in the sense above, the pattern representing a generalized X-

bar schema – one head, one complement, some fixed number of specifiers – provides the 

bushiest trees.  As noted there, this in effect derives a structural basis for endocentricity: 

we expect trees to form according to an endocentric, generalized X-bar format because 

that provides the bushiest, most balanced trees. 

  However, we can perhaps go beyond that rather general claim, and motivate 

specifically the one-specifer X-bar schema as unique, “the” natural solution.  Even in 

present terms of choosing one format or another among a class of matched-complexity 

alternatives (each a distinct “recipe” for structure-building), we can see something special 

in the one-specifier form. 

  Among the set of generalized X-bar forms, the more complicated forms provide the 

bushiest trees.  The Spine is the trivial generalized X-bar form with a single kind of non-

terminal object, the only viable phrase structure pattern in its complexity class.  So 

although the Spine is the worst kind of tree for minimizing c-command relations, it is 

also, as the only option in this class, trivially also the best.  The one-specifer X-bar 
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schema provides globally better (bushier) trees than the Spine; the two-specifer 

generalized X-bar form, called “3-bar”, builds bushier trees still.  In terms of global 

evaluation, over complete tree forms, the more complex the molecule, the better the tree 

that can be built (and within any class, this optimal form corresponds to a generalized X-

bar format).   

  However, the X-bar schema, among the spectrum of globally optimal endocentric 

(generalized X-bar) structural formats, is the last such to also be locally best among its 

matched-complexity alternative set.  As briefly noted in Medeiros (2008), extremely local 

changes in the total number of c-command relations, as each recipe is iterated, select X-

bar over alternatives from the same complexity class.  That is, as one example of an 

endocentric, generalized X-bar form, the X-bar schema falls in the spectrum of globally-

best against a field of matched-complexity competing patterns.  However, it is also 

locally best, taking the best next step at an extremely local scale (within a single iterable 

phrase structural “molecule”). 

  Compare how new c-command relations accumulate in the X-bar format, as 

opposed to High-headed D-bar, (one manifestation of) the only other non-degenerate 

pattern in its class (see below).  In these diagrams, suppose that the triangles represent 

unknown but equal amounts of structure, with x nodes.  The diagrams count how many 

new c-command relations are created, within the construction of the characteristic 

molecule of structure, as a function of x. 
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31) a.   X-bar        b.   High-headed D-bar 

               2x+2                 2x+2 

              x        x+1              1        2x 

           1           x                     x          x 

       3x+3 new c-command relations   4x+2 new c-command relations 

So long as the phrasal objects are internally complex (x>1), fewer new c-command (and 

dominance) relations accumulate locally in the X-bar pattern than in the HH D-bar 

pattern, though they both apply to the same kind of input structures.  This reflects local 

optimality, in the intended sense.11  

  Interestingly, for the globally optimal generalized X-bar forms of higher 

complexity (corresponding to phrase structural patterns built around an X-bar molecule 

with one head, one complement phrase, and two or more specifier phrases), this is not the 

case.  That is, while the generalized X-bar forms with two or more specifiers are still 

globally best, they are not locally best in the way that the one-specifier X-bar schema is.  

Some other format within their complexity class achieves a better balance within the 

local molecule, thus is more locally optimal. 

  We can understand the issue, again, in terms of the Spine and Bush: a generalized 

X-bar form aligns the phrases it contains (complements and specifier(s)) into a stack 

above the head of the molecule.  Within the horizon of a single phrase, this is effectively 

a spine.  Within that horizon, a better balance is provided by locally bushy structure.  In 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
11 Note that no fully general local comparison among phrasal patterns, of the sort indicated above, is 
possible.  This is so because different patterns may not take commensurable inputs.  For example, both 
Power of 3 and 3-bar combine three phrasal objects of like shape with a single terminal; other members of 
their class might combine two terminals and two phrases, or other possibilities.  See Chapter 6 for further 
discussion. 
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particular, the pattern I call “Power of 3” (see further discussion of this object in 6.5 

below) is locally better than the generalized X-bar format called “3-bar”, of equivalent 

local complexity. 

32) Power of 3           
 
     
 
 

33) 3-bar 
 
   
 
 

The “local” form of the Power of 3 system is bushy, while 3-bar is locally a Spine.  This 

points to the tension between local and global optimality in the phrase structure systems 

of greater complexity than X-bar.  Within its phrasal horizon, if phrasal off-branches are 

treated as having equal size, Power of 3 is actually a better choice than 3-bar: fewer new 

c-command relations are computed within its horizon if that pattern is followed, rather 

than 3-bar.  3-bar “wins out” only on a global scale, going beyond the phrasal horizon.  

Below, I depict the “skeleton” of each of the forms in question, within its own phrasal 

horizon. 

34)      
 
 
 
 
    Power of 3: locally a Bush        3-bar: locally a Spine 
 
Suppose that, within the derivational horizon of the assembly of one or the other of these 

phrasal molecules, the inputs are H, XP, YP, ZP, where H is a head, and XP, YP, ZP are 
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complex phrases.  Simplifying, assume that XP, YP, and ZP are of equal size, say x 

nodes.  Then by assembling these objects into a Power-of-3 molecule, one adds a total of 

6x+10 new c-command (or dominance) relations, while the 3-bar pattern adds 6x+12 new 

vertical relations.  The diagram below illustrates the accumulation of vertical relations 

within these two patterns12: 

35) 3x+3        3x+3 

       2x       x+1                x       2x+2   
 
           x          x         1         x                  x        x+1 
 
                         1           x 
  
      6x+4 new c-command relations       6x+6 new c-command relations 

Let me point out immediately that this in no way contradicts the claim that 3-bar makes 

available the bushiest overall trees; it is still the globally-best system.  However, 

minimization of c-command at a local, dynamic level favors, in this instance, the non-

projective Power of 3 format.   

  To repeat, this is different from the case for X-bar, which is selected both globally 

(like each generalized X-bar format, within its own class of patterns of matched 

complexity), but also locally.  It is a consequence of the fact that the local skeleton of the 

X-bar schema is simultaneously a bush and a spine that this holds true.   

  We see again that there is something special about the X-bar schema, related to the 

fact that it represents a kind of optimal compromise between concerns pushing toward the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Note that the formulae given below do not compute the number of c-command relations in the whole 
tree, but rather just the new relations added at this stage.  The sum for the full tree would add, to these 
formulae, a further term for the internal c-command sums of each of the phrasal objects. 
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Spine as the ideal syntactic structure, and concerns which favor the Bush.  In the next 

section, I divert to explore a conception of this shape as a fractal, noting that it is in a 

sense the first binary-branching fractal (moreover, a multi-fractal), with “golden” 

properties expressed in terms of its dimensionality. 

 

7.4 The X-bar schema is a golden fractal 

In this section, I examine some geometric properties of a particular conception of the X-

bar format as a line-division algorithm.  I first discuss a conception of branching patterns 

as division schemes on a line, and relate that notion to the construction of the so-called 

Cantor set (see for example Schroeder 1997: 320), the simplest fractal shape of all.  I then 

show that the X-bar schema generates an asymmetric variation on the Cantor set, called 

the two-scale Cantor set.  

  One intriguing property of the X-bar schema is that it is, in a sense defined below, 

the ‘first’ (or simplest) kind of binary-branching (multi-)fractal.  Fractals are self-similar 

objects of often non-whole-number dimension.  Fractal patterns in nature are well known, 

so it should not be that surprising to find such a property underlying the structures of 

natural language.  The defining property of such objects is that their ‘size’ depends on the 

scale at which they are measured.  One of the seminal papers in the study of fractals 

(Mandelbrot 1967) was entitled, “How long is the coast of Great Britain?”  As observed 

there, the answer to this question depends on the scale at which one measures; as ever-

finer structure is considered, the length computed increases without converging on a 

constant value.  In this light, some might object to calling natural language fractal, for 
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surely real expressions are digital, ‘bottoming out’ with an invariant absolute size.13  This 

is nothing more than the familiar discreteness property of natural language. Regardless, 

the point here is one about the abstract (infinite) space of possible tree-forms that the X-

bar schema generates, which is indeed fractal ‘all the way down’. 

 

7.4.1 Phrasal patterns as line division algorithms 

In defining a notion of dimensionality for phrase structure patterns, there is an immediate 

problem.  In particular, it is not clear how to compute such a measure if we assume that 

one node in the tree is “as big as” any other.  Instead, we wish to find a way of thinking 

about these patterns that incorporates a straightforward notion of scaling.  I will suggest 

that the natural implementation is to interpret binary branching as geometric halving of a 

line segment.  The intended correspondence can be easily understood with a simple 

example; in fact, the simplest conceivable example of a fractal, the Cantor Set.  

 

7.4.2 The Cantor Set 

Consider the following geometric construction. We begin with a line segment, 

corresponding to the interval [0,1].  We then remove the middle third, leaving us the two 

intervals [0, 1/3] and [2/3, 1].  We then remove the middle third of those intervals, and so 

on, ad infinitum.  The first few steps in this process are sketched below: 

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13 Note that recent developments in syntactic theory (notably, the micro-comparative syntax of 
cartography, and Starke’s so-called nano-syntax) suppose that the atoms of syntactic combination are much 
smaller than previously thought, probably smaller than morphemes. Even so, that amounts only to a 
revision of the granularity of syntactic structures; such approaches hardly deny the fundamentally digital 
character of natural language. 
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 Figure 4: Iterative construction of the Cantor Set. 

This process, in the limit, generates an infinite ‘dust’ of points.  At each generation, we 

have two one-third scale copies of the whole figure; thus one can compute the so-called 

“box dimension” in the usual way, according to this formula: 

36) ln(number of copies) 
       ln(scale factor) 
 
According to the construction just described, at each generation we have 2 copies of the 

whole, with a scale factor of 3.  The box dimension of the (one-scale) Cantor set is then 

ln(2)/ln(3) (equivalently, log32), about .631 (Schroeder 1997: 320, 322).  Thus, the figure 

has a dimensionality in between that of a point (dimension = 0) and a full line (dimension 

= 1), as expected.   

  Moreover, this is in a clear sense the “first” or simplest kind of fractal.  That is, the 

background dimension cannot be lower than 1 (division of a zero-dimensional point does 

not make any sense), as it is here.  Three is the smallest denominator for a division 

scheme that results in fractal structure.  In particular, removal of halves of a line segment 

(i.e., division by 2) would generate, in the limit, a single point (dimension 0, not a 

fractal). 
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  The iterative construction of the Cantor set discussed above invites a natural kind 

of “phrasal” analysis.  In particular, we can describe the recursive construction of the 

Cantor set in terms of the following object: 

37)  

 

That is, the removal of the middle third of a line segment corresponds to an iterated 

syntactic form with ternary branching, with two further phrases and a terminal in the 

middle.  It is natural to identify syntactic terminals with removed segments in the 

geometric construction, because neither contains further structure subject to division.  

The syntactic non-terminals, on the other hand, are the pieces of structure that are still 

“live”, with internal structure relevant to the next iteration of the division process.  Note 

also that the syntactic branching corresponds directly to geometric division; in this case, 

we have ternary branching in the phrasal form matching division by thirds on the line 

segment. 

 

7.4.3 The image of X-bar structure is an Asymmetric Cantor Set 

Continuing with the idea of a correspondence between iterated geometric division and 

syntactic patterns, let us mark out how the expanded X-bar schema divides the line 

segment.  We perform this mapping in a natural way: just as we took ternary branching in 

the construction of the Cantor set to correspond to division of the line segment into thirds, 

we will take binary branching in the tree to correspond to halving in the line segment. 

The object at the root is mapped to the interval [0, 1]; the left daughter of the root is 
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mapped to [0, ½], and the right daughter to [½, 1] (see fn 4 below).  Further binary 

branching within each daughter corresponds to a further division in half of the branching 

object’s interval.  A syntactic terminal, in terms of branching geometry, is a branch 

permitting no further internal growth.  In the interval map, we delete the intervals 

corresponding to head positions (terminals), and consider only the branching residue.   

  The figure below illustrates the intended mapping scheme applied to a single X-bar 

phrase.  In this instance, the specifier ZP is mapped to [0, ½], while the complement YP 

is mapped to [¾, 1]; the non-branching X0 is mapped to (½, ¾).14  

      XP 
 
         ZP                    X’ 
 
                        X0       YP 
 
                 ZP              X0       YP 
 
 
 
      0          ¼         ½         ¾          1 
 Figure 5: First stage of mapping X-bar form to line segment. 
 
Of course, ZP and YP themselves have the same structure as the root XP: 
 
                              XP 
                 ZP              X0       YP 
                     Z0                         Y0 
 
 
 
 Figure 6: Second stage of mapping X-bar form to line segment. 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14 Mapping branching categories to closed intervals [x, y], and terminals to open categories (x, y) – given 
the way that the X-bar scheme places heads in the interior of their phrases – ensures that this scheme will 
not map a single point to non-overlapping syntactic categories (with the exception of “bar-level” 
categories).  Put another way, if point x is in the interval corresponding to distinct syntactic objects X and 
Y, then either X dominates Y or Y dominates X.  This ensures that the mapping is mathematically well-
behaved. 
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Continuing this process ad infinitum generates a ‘two-scale’ Cantor set, below. 

 
   Figure 7: Iterative construction of two-scale Cantor set. 
 
Examining the two-scale Cantor set, note that it is created by having two copies of the 

whole at different scales at each generation, with one half-scale and one quarter-scale 

copy.  The figure can be generated by iteratively removing the third quarter of each line 

segment; in linguistic terms, ‘removing a segment’ means having a terminal in that 

position (preventing any further internal subdivision within its own boundaries).  In other 

words, the half-scale copy of the whole is the specifier, the quarter-scale, the 

complement, and the removed segment, the head.   

  Now, technically any difference in scale between the two copies would result in a 

two-scale Cantor set.  But there is something decidedly natural about the choice of one 

half-scale and one quarter-scale copy, especially in light of the background assumption of 

strict binary branching: there is just no simpler way of getting off-scale copies under that 

assumption.15   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15 Going further, there is a sense in which this (X-bar/2-scale Cantor set) shape is the first non-trivial 
binary-branching fractal of any sort (not just the first multi-fractal).  That is, it is the smallest kind of self-
similar binary-branching object whose image on the line is neither the full line, nor a single point.  For 
example, consider the options utilizing a smaller/more local recursive schema, i.e. whose characteristic 
structure can be fully described in terms of a single level of embedding.  The options are: XP  [X0 Y0] 
(not a growth scheme, this shape projects no image on the line at all); XP  [X0 YP] (iterated head-
complement structure, what I have been calling the Spine: the image on the line of this shape is a single 
point, dimension 0); and XP  [YP ZP], a scheme determining no terminal locations at all, and whose 
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7.4.4 The golden dimension of the X-bar form 

This figure, perhaps unsurprisingly, has Hausdorff dimension defined in terms of the 

golden mean. Specifically, its dimensionality is ln(phi~1.618…)/ln(2), or equivalently, 

log2(Phi), about .694 (see Tsang 1986: 1390).16  Technically, the figure is a multi-fractal; 

various ways of computing its dimension do not agree as they do for simple fractals, and 

the object properly speaking has a spectrum of dimensions.  For example, the simple 

formula used to compute the box dimension of the Cantor set cannot be applied, because 

there is no single “scale factor” that describes the copies of the whole at each generation 

(see fn. 16).   

  I leave a further exploration of these properties to further work.  For now, the point 

is that this gives us yet another way of expressing the intuition that the X-bar schema is 

the Golden Phrase.  In the next section, I turn to a closer examination of other phrasal 

arrangements, defining a notion of “growth factor” in terms of a matrix formulation of 

phrasal recurrence relations.  As one might already guess, the growth factor of the X-bar 

format is just Phi, the golden mean.  As we will see, the matrix formulation is of interest 

and considerable utility in itself, allowing us to draw connections, for example, between 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
image is the full line, dimension = 1.  Allowing a recursive scheme with depth 2 provides access to X-bar 
organization, as well as “D-bar” organization (see chapter 4), e.g. XP  [[X0 WP][ Y0 ZP]].  Such a 
scheme, when mapped to the line segment as described above, produces a (fractal only, not multi-fractal) 
figure with two one-quarter-scale copies of the whole at each generation (so, with box dimension = .5). 
16 Note that the box dimension cannot be computed here according to the formula above.  However, one 
interpretation of the dimension of this object is to say that it has Phi ½ scale copies at each generation.  This 
accords with the comments on “growth factor” in section 6.5 below, effectively the limit of the ratio of the 
number of items on one level of a tree to the number on the previous line.  Successive lines of the tree 
correspond, in the line segment mapping, to half-scale copies; the fact that the X-bar form has a growth 
factor of Phi is then another way of expressing what this dimensional measure states.  Going further, I 
make the natural conjecture that for the non-terminal image on the line of an arbitrary non-degenerate 
phrasal pattern with growth factor G is log2G. 
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phrasal patterns that compose simpler patterns, and factorization of polynomials 

associated with those patterns. 

 

7.5 Golden growth in X-bar phrase structure 

This section provides another way of formulating the deep mathematical connection 

between the X-bar schema and the golden mean.  In particular, by describing various 

phrasal patterns in terms of matrices, we find a very simple and natural way of 

quantifying their growth properties, via a number associated with each matrix that I will 

call the “growth factor” of each syntactic pattern. 

  Along the way, this investigation of phrase structure allows us to see further 

interesting facts.  For example, we will see that some superficially distinct phrasal 

patterns really reflect the same underlying pattern; I investigate a conception of phrasal 

growth as iterated linear transformation (i.e., matrix multiplication) applying to some 

“seed” vector, with different choices of seed vectors leading to superficial variety.  We 

will also see a connection, for “degenerate” phrasal patterns that can be described as the 

composition of simpler patterns, between syntactic composition and the factorization of 

the associated polynomials. 

 

7.5.1 Defining a notion of ‘growth factor’ 

The goal of this section is to find a way of quantifying the “growth” of distinct syntactic 

patterns.  Intuitively, the desired notion of “growth factor” describes the ratio of the 

number of syntactic objects on one line of a maximally expanded tree built from some 
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phrasal pattern, to the number of syntactic objects on the preceding line.17  That is, we 

wish to define the growth factor as follows: 

38) lim      (number of syntactic objects on line n) 
            n  ∞   (number of syntactic objects on line n-1) 

In the case of the X-bar schema, it turns out that we already have what we need to see 

that its growth factor will turn out to be the golden mean.  Recall from section 6.2 above 

the observation that the number of each kind of X-bar object on successive lines of a 

maximal X-bar tree form the Fibonacci sequence.  Knowing that the limit of the ratio of 

one Fibonacci number to the preceding one is Phi (see section 6.1.2 for discussion), it 

follows that the growth factor for the X-bar form is also Phi. 

  However, that is a bit unsatisfying.  In particular, at this point we do not have a 

fully general notion of how to find the growth factor directly for phrasal arrangements 

other than the X-bar form.  Such a notion would be useful in understanding the phrasal 

terrain a bit better.  Put another way, since the goal of this chapter is to argue that the X-

bar schema is in some sense the “best possible” structure, it will pay to think carefully 

about what else is possible, and to have some handle on the properties of every other kind 

of phrasal organization.  As we will see, the key to capturing the relevant properties lies 

in formulating syntactic patterns as matrices. 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 Note that we are moving away from the geometric scaling discussed in the last section, necessary to find 
a usable notion of fractal dimension for syntactic patterns, back to a conception where every node counts 
equally. 
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7.5.2 Expressing phrase structure patterns as matrices 

In this section, I discuss the description of phrasal recurrence relations in terms of 

matrices.  To help orient us, it will be helpful to review the description of the X-bar 

schema that has been given previously.  To this point, we have described the relevant 

pattern through the use of abstract phrase structure rules (see chapter 3), and through tree 

diagrams.  I reproduce both of these descriptions of the X-bar pattern below. 

39) X-bar 

  PSRs:    Tree: 
  2   2  1    
  1   0  2  
 
 
If we are willing to give up on representing linear order as part of our phrase structure 

description, there is a very natural way of translating these descriptions into matrix form. 

40) X-bar 
  PSRs:       Matrix:     
  2   2  1   1 1   
  1   0  2   1 0  
 
The rows of the matrix match the phrase structure rule on the same line; both the rule and 

the row in the matrix describe what a given kind of non-terminal object (an input) 

dominates (its output). The columns correspond to non-terminals in the output, with the 

order among columns matching the order of the rows.  However, the elements in the 

matrix themselves are the count of the number of each type of object produced.18 For the 

X-bar form, the first row in the matrix is 11; this corresponds to the phrase structure rule 

2  2 1.  This means that when expanding the category characterized by the first row 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
18 Note that the matrix form does not encode the terminal positions explicitly.  Instead, terminals appear as 
an absence; a non-terminal dominates a terminal if the entries in its corresponding row sum to less than 2. 
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(the root-type object), one gets 1 of the categories specified in the first row (2, a root-type 

object) and one of the categories in the second row (1).  The second row of the X-bar 

matrix, 1 0, corresponds to the head-complement 1  0 2 phrase structure rule, with one 

of the first-row non-terminal objects (an XP), and zero second-row non-terminal objects 

(no X’s).  To avoid confusion, note that the numbers in the phrase structure rules are 

arbitrary labels for types of syntactic objects; the numbers in the matrix count the number 

of those objects.19  The numbers in the phrase structure rules correspond to positions 

(rows and columns) in the matrix. 

 

7.5.3 The growth factor is the characteristic root 

Having struck on this formulation, we are now in a position to use the tools of linear 

algebra to describe the syntactic patterns at issue.  A first step in this direction is to note 

that, associated with each matrix, there is a polynomial, called the characteristic 

polynomial of the matrix. 

  In the case of the X-bar form, the characteristic polynomial is, unsurprisingly by 

this point, the “golden” polynomial describing the golden mean (see section 7.1 above):   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
19 This invites a straightforward characterization of the structural patterns at issue. Namely, the set of 
phrase structural systems of n non-terminal types is (a subset of) the set of n x n matrices with whole 
number elements, such that the sum of the elements in any row is at most 2 (up to 2, because of binary 
branching; or less, because a non-terminal may immediately dominate one or two terminals). To qualify as 
phrase structure systems in the relevant sense, a number of further conditions must be met, which can again 
readily be formulated as conditions on matrices.  One condition is that it includes terminal positions; in 
terms of the matrix, at least one row must sum to less than 2.  Another condition is that the root category 
must be the analogue of a “cyclic generator”, in the group-theoretic sense, of the set of non-terminal 
categories (including itself).  That is, the root category must dominate (some category that dominates…) 
each non-terminal type; this rules out the case where there are, in effect, disjoint cycles, with the root 
leading only to some proper subset of the non-terminal categories specified by the phrase structure rules.  
Note that the “Pair of Spines”, specified by PSRs 2  11, 1  0 1, fails this condition: the configuration at 
the root does not occur anywhere else in the tree. 
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41) x2 – x – 1 
 
We can describe the desired notion of growth factor in terms of the characteristic 

polynomial. It is simply the largest real root of the characteristic polynomial 

(algebraically, the largest real k such that (x – k) is a factor of the polynomial).20  This 

quantity is called the characteristic root; it is identified with the dominant eigenvalue of 

the matrix (for discussion of these terms, the reader is referred to any basic textbook on 

linear algebra).   

  For the X-bar example, the largest positive root of the characteristic polynomial (its 

characteristic root, and the dominant eigenvalue) is the golden number Phi.  Thus, it is 

quite correct to say that the X-bar format exhibits “golden” growth. Note that the growth 

factor for any binary-branching syntactic pattern is a number in [1, 2): the bottom 

boundary 1 corresponds to the Spine (where each level in the tree is an exact copy of the 

level above it), and 2 to the Bush (where each level of the tree exactly doubles the 

material on the previous level).   

 

7.5.4  Growth factors by complexity class 

It is of some interest to consider what kinds of growth, as quantified by the growth factor 

just discussed, characterize other, less familiar phrasal patterns.  In what follows, I 

examine the growth factor of systems simpler than the X-bar form, those of equivalent 

complexity, and those in the class “one step beyond” X-bar.  I do not explore patterns any 

more complex than that in this work. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
20 Complications arise for “degenerate” systems, which may have some subparts that grow at different 
rates.  See below for more discussion of such forms. 
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7.5.4.1 One non-terminal: pair, spine, or bush 

The simplest kind of syntactic patterns are built around a single kind of non-terminal 

object.  The choices here are quite constrained.  Indeed, if we insist that a syntactic 

pattern must provide discrete infinity (understood in the present context as a requirement 

for designated positions for terminals, as well as indefinite embedding of further non-

terminals), only one option in this class is viable, the one corresponding to the Spine. 

Nevertheless, I illustrate the two non-viable options as well.  I present descriptions of 

these patterns in terms of abstract phrase structure rules, matrices, and trees, indicating 

the characteristic polynomial and growth factor (characteristic root) of each. 

42) The Pair 
   PSR   Matrix  Tree 
 
   1  0 0   0 

   Characteristic polynomial: x – 0  
   Growth factor:  0 
 

43) The Spine 
   PSR   Matrix  Tree 
 
   1  0 1   1 

   Characteristic polynomial: x – 1  
   Growth factor:  1 
 

44) The Bush 
   PSR   Matrix  Tree 
 
   1  1 1   2 

   Characteristic polynomial: x – 2  
   Growth factor:  2 
 



	
  

	
  

245	
  

The members in this class are quite simple.  Note that the Pair and the Bush are not 

discrete infinite systems: the former does not allow for indefinite growth, while the latter 

does not provide designated locations for terminals.   

 

7.5.4.2 Two non-terminals: The X-bar class 

The structural possibilities become more interesting in the next class of phrasal patterns, 

defined over two non-terminal types.  While the systems with one non-terminal type were 

described with rather dull one-element matrices (e.g., [1] for the Spine), this class is 

described by 2x2 matrices.   

45) X-bar 
    PSRs:  Matrix: 
    2   2  1  1 1   
    1   0  2  1 0  
 
  Characteristic polynomial: x2 – x – 1 
  Growth factor:   ϕ ~ 1.618 
 

46) High-headed X-bar 
    PSRs:  Matrix: 
    2   0  1  0 1   
    1   1  2  1 1  
 
  Characteristic polynomial: x2 – x – 1 
  Growth factor:   ϕ ~ 1.618 
 

47) D-bar 
    PSRs:  Matrix: 
    2   1  1  0 2   
    1   0  2  1 0  
 
  Characteristic polynomial: x2 – 2 
  Growth factor:   √2 ~ 1.414 
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48) High-headed D-bar 
    PSRs:  Matrix: 
    2   0  1  0 1   
    1   2  2  2 0  
 
  Characteristic polynomial: x2 – 2 
  Growth factor:   √2 ~ 1.414 
 
Notice that the four patterns above consist of two pairs of “siblings” (e.g., X-bar and 

high-headed X-bar are one pair of siblings), where the superficial form is different, but 

the polynomial and growth factor are identical.  In fact these sibling patterns are really 

the same pattern, as discussed below.   

  The last two patterns in this class are “degenerate”: they incorporate subtrees drawn 

from a simpler class of phrase structures.  In this case, they are built by composing the 

Spine with itself, or with the Pair. 

49) Spine of Spines 
    PSRs:  Matrix: 
    2   2  1  1 1   
    1   0  1  0 1  
 
  Characteristic polynomial: x2 – 2x + 1 
  Growth factor:   1 
 

50) Spine of Pairs 
    PSRs:  Matrix: 
    2   2  1  1 1   
    1   0  0  0 0  
 
  Characteristic polynomial: x2 – x 
  Growth factor:   1 
 
That exhausts the viable possibilities in this class.  Note that a seventh possibility, a Pair 

of Spines, is ruled out by failing to be self-similar; the root does not dominate any further 

root-like categories.   
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7.5.4.3 Orientation families 

In the representations of “sibling” systems given above, the matrix form is different (but 

the polynomial and growth factor are the same).  However, we can recast things slightly 

to see that in effect these systems are really two views of the same pattern, merely 

oriented differently with respect to the root. 

  Top-down maximal growth of a given phrase structure system can be understood as 

repeated linear transformation of a “seed vector” representing whatever non-terminal 

category is placed at the root.  This column vector is multiplied on the left by the phrase 

structure matrix, producing a new vector: the first vector counts the number of objects of 

each non-terminal type on one line of the tree, and the product with the matrix yields a 

vector counting non-terminal types on the succeeding line of the tree.  Let us call this the 

“accumulation vector”.  The general form is this, where A is the phrase structure matrix, 

and xi is an accumulation vector: 

51) Axi = xi+1 

In these terms, we can represent X-bar and High-headed X-bar with the very same 

matrix21, but different choices of seed vector (in effect, X-bar is this pattern grown from 

an XP at the root; high-headed X-bar is the same pattern with the X-bar non-terminal 

type at the root).  This means that X-bar has as its seed this column vector: 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
21 In this case, I choose the X-bar matrix as the more basic form.  We could as well take the matrix for the 
High-headed form as basic, and express X-bar as iterated linear transformations by that matrix of a seed 
vector (0,1).  This reinforces the point that there is no reification of bar-levels as anything other than a 
notational convenience.   
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52)  1 
          0 
 
Meanwhile, High-headed X-bar has this seed vector: 
 

53)  0 
       1 
 
We can then understand the growth of these syntactic patterns, as the maximal tree is 

grown from the root, in terms of a series of linear transformations.  The seed vector is 

multiplied by the phrase structure matrix (on the left); the output vector undergoes the 

same multiplication, etc., yielding a series of column vectors representing the number of 

non-terminal types at each level of the tree. 

  For example, the first iteration of “growth” of X-bar translates to this matrix 

multiplication: 

54) A    x0      =   x1 
      Matrix  X  Seed vector  =  First Accumulation vector 
      1 1   1      1 
      1 0   0      1 
 
Iterating this multiplication, we get the following sequence of accumulation vectors: 
   

55)  1  1  2  3  5  8  13  21  34 
       0  1  1  2  3  5  8  13  21 
 
Thus, the accumulation vectors for the X-bar pattern take the form of two consecutive 

Fibonacci numbers. 

  On the other hand, as stated, high-headed X-bar starts with (0,1) as a column 

vector, creating the following sequence of accumulation vectors (each a sum of the 

number of each type of non-terminal syntactic object, on successive lines of the maximal 

tree grown by that pattern): 
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56)  0  1  1  2  3  5  8  13  21       
 1  0  1  1  2  3  5  8  13   

 
As a final note, observe that with different seed vectors (representing an anomalous 

configuration at the root of the tree), we can get accumulation vectors with numbers 

drawn from distinct Fibonacci-like sequences (those that share the same recurrence 

relation, but start with different seed values), for example the Lucas numbers.  Thus, if 

near the root there is a configuration with one XP-type and two X’-type objects, 

corresponding to (1,2) as a seed vector, we get the following sequence of accumulation 

vectors, where the elements are adjacent Lucas numbers: 

57)  1  3  4  7  11  18  29  47  76 
       2  1  3  4  7  11  18  29  47 
 
Before concluding this section, I provide an intuitive demonstration of how and why the 

characteristic root (the dominant eigenvalue) gives the growth factor in the desired sense.  

To repeat, maximal iteration of a phrasal pattern resolves as iterated multiplication of a 

vector by the phrase structure matrix.  We can understand these n x n matrices as linear 

transformations mapping Rn to Rn.22  In these terms, examining successive lines of the 

maximal expansion of a given pattern amounts to tracking the trajectory of an initial point 

(the configuration at the root) under iteration of the map.  Understood this way, we can 

understand directly why the dominant eigenvalue describes the phrasal growth. 

  Start with an arbitrary vector with non-negative components. Recall that these 

components express the number of each non-terminal type at a given level of the tree.  In 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
22 The entries in the matrices, and in the vectors, are always non-negative integers (one cannot grow “half a 
node”, for example).  However, to understand the action of the linear transformation with respect to an 
eigenbasis, it will be useful to consider them to act over the reals rather than the integers; in particular, the 
eigenvectors are often expressed in terms of non-integers. 
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geometric terms, we may think of this as a linear combination of independent basis 

vectors x, y, … (one for each different type of non-terminal): 

58) ax + by … 

We may express these instead as a linear combination of eigenvectors (a standard 

technique), finding appropriate coefficients c, d, etc.: 

59) ax + by …. = cv1 + dv2 … 

Suppose v1 has eigenvalue λ1, eigenvector v2 has eigenvalue λ2, etc.  Then multiplication 

by the matrix n times has a particularly nice expression in terms of the eigenvector basis: 

60) λ1
ncv1 + λ2

ndv2 … 

Suppose λ1 is the largest eigenvalue; then it is clear that as n increases, the sum of 

component vectors converges on λ1
ncv1 (for non-zero c). 

  I leave the matter here. In the next subsection, I discuss the phrase structural 

possibilities that arise once we allow three non-terminal types. 

  

7.5.4.4 Three non-terminals  

With an additional non-terminal object, considerably more patterns are available: 57 

superficially distinct patterns.  I illustrate a handful of these systems in this section, then 

present a table summarizing the characteristic polynomial and growth factor for each of 

the distinct underlying patterns.  As might be expected, with three non-terminal types 

each underlying pattern can have up to three superficial manifestations, by permuting 

which non-terminal is placed at the root.  These systems are furthermore identified with a 

catalogue number, corresponding to a numbering system in a different work.  It is 
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included here as a way to cross-reference between the individual presentations of some of 

these patterns, and the fuller table at the end summarizing the growth factors of all of the 

non-degenerate patterns in this class. 

61) 2  Power of 3           
 
 3  1  2  0 1 1     
 2  0  3  1 0 0 
 1  3  3  2 0 0 
 
Characteristic polynomial: x3 - 3x = 0  
Growth factor:   √3 = 1.732… 
 

62) 9  3-bar (Generalized X-bar format with two specifiers) 
 
 3  2  3  1 1 0 
 2  1  3  1 0 1   
 1  0  3  1 0 0 
 
Characteristic polynomial:  x3 – x2 – x – 1 = 0 
Growth factor:   the “Tribonacci” constant,  ~1.839… 
  

63) 14 Double-headed X-bar 
 3 --> 1  3 1 0 1     
 2 --> 0  0 0 0 0 
 1 --> 2  3 1 1 0 
 
Characteristic polynomial:  x3 – x2 – x 
Growth factor:   Phi, 1.618… 
 

64) 24 
 
 3 --> 2  2       0 2 0 
 2 --> 1  3       1 0 1 
 1 --> 0  3       1 0 0 
 
Characteristic polynomial: x3 – 2x – 2  
Growth factor:  1.769… 
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65) 26 
     
 3 --> 2  3 1 1 0  
 2 --> 1  2 0 1 1   
 1 --> 0  3 1 0 0 
 
Characteristic polynomial:  x3 – 2x2 + x – 1  
Growth factor:   1.7548… (rho^2) 
 

66) 29 
 
 3 --> 2  3 1 1 0  
 2 --> 1  1 0 0 2 
 1 --> 0  3 1 0 0 
 
 Characteristic polynomial: x3 – x2 – 2 
 Growth Factor:   1.6956… 
  

67) 39 
 
3 --> 2  3 1 1 0 
2 --> 1  3 1 0 1 
1 --> 0  2 0 1 0 
  
 Characteristic polynomial: x3 – x2 – 2x + 1 
 Growth Factor:   1.8019… 
 

68) 40            
 
3 --> 2  2 0 2 0 
2 --> 1  3 1 0 1 
1 --> 0  2 0 1 0 
 
 Characteristic polynomial:  x3 – 3x 
 Growth factor:  √3 = 1.732… 
 

69) H  X-bar of Spines  
 
3 --> 2  3 1 1 0      
2 --> 1  3 1 0 1      
1 --> 0  1 0 0 1 
 
 Characteristic polynomial:  x3 – 2x2 +1  
 Growth factor:    Phi = 1.618… 
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70) K  Spine of Spines of Spines 

 
3 --> 2  3 1 1 0       
2 --> 1  2 0 1 1      
1 --> 0  1 0 0 1      
 
 Characteristic polynomial: x3 – 3x2 + 3x – 1 
 Growth factor:   1 
  
I give below a table collecting the orientation families of the non-degenerate systems 

from this class.  They are sorted by their growth factor; I also list the characteristic 

polynomial for these families, and note mathematical properties of the growth factor. 

Many, but not all of the growth factors are Pisot numbers (also known as Pisot-

Vijayaraghavan or PV numbers), which are algebraic integers (real solutions of 

polynomials with integer coefficients) where the other roots of the polynomial are all of 

magnitude less than one (lying within the unit disk on the complex plane). 

  Note that the last entry, the tribonacci family including 3-bar, has the largest 

growth factor in this set.  That is another way of expressing the “global optimality” of 

this system relative to alternative phrasal forms built with the same number of non-

terminals, as discussed in Chapter 6.  
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Systems in family Polynomial Growth factor Special notes 
7, 32, 34 x3 – 2 1.2599 3√2, non-Pisot  
13, 25, 35 x3 – x – 1 1.3247 Plastic number rho, 

the smallest Pisot #23 
22, 28, 33 x3 – x2 – 1  1.4656 Pisot # 
1, 31, 41 x3 – x – 2 1.5214 Non-Pisot 
5, 30, 37 x3 – 4  1.5874 3√4 
3, 20, 29 x3 – x2 – 2 1.6956 Non-Pisot 
4, 18,27 x3 – x2 – 2 1.6956 Non-Pisot24 
2, 38, 40 x3 – 3x 1.7321 √3, Non-Pisot 
17, 19, 26 x3 – 2x2 + x – 1 1.7548 Pisot #; plastic 

number rho squared 
6, 12, 24 x3 – 2x – 2 1.7693 Non-Pisot # 
11, 16, 39 x3 – x2 – 2x + 1 1.8019 Non-Pisot #, = 

2*cos(π/7); three 
distinct real roots.  

9, 10, 21 x3 – x2 – x – 1 1.8393 Pisot #, the 
“tribonacci” constant 

Table 6: Characteristic polynomials and growth factors for three non-terminals. 
 
 

7.5.4.5 Factorization and composition in degenerate systems 

There is a close relationship between phrase structural composition and factorization of 

the characteristic polynomial.  We see this clearly in the degenerate systems, which can 

be described in terms of composing patterns of lesser complexity than the whole pattern.  

In particular, if a pattern consists of the composition of two simpler patterns, its 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
23 The plastic number rho is associated with the so-called Padovan sequence (1,1,1,2,2,3,4,5,7,9,12,16,21, 
28,37…), in the same sense that the golden number is associated with the Fibonacci sequence.  Note further 
that the polynomial for this orientation family, x3 – x – 1, corresponds to the recurrence relation that 
generates the Padovan sequence, an = an-2 + an-3. 
24 Here, distinct syntactic forms have the same growth factor.  This can again be understood in terms of 
linear algebra: the matrices corresponding to members of a single orientation family are similar matrices, in 
the technical sense (A and B are similar matrices if there is an invertible matrix C such that A = CBC-1).  
The fact that these distinct orientation families have the same growth factor reflects the well-known fact 
that, while similar matrices have the same characteristic polynomial (and, so, roots thereof), matrices with 
the same characteristic polynomial may not be similar. 
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polynomial will be the product of the polynomials associated with its component 

patterns.25 

  For example, one degenerate system of interest, from the three-non-terminal-type 

class, is what I call “double headed X-bar”; as the name suggests, it is the form obtained 

from an X-bar tree by replacing all of the original terminals with a non-terminal 

dominating a pair of terminals. The characteristic polynomial of Double-headed X-bar is 

x3 – x2 – x; this is the X-bar polynomial (x2 – x – 1) times an additional factor of x.  This 

terminal subcycle (the Pair) corresponds to a linear factor of (x – 0), i.e. a “zero-growth” 

portion. Another degenerate system from this class is “the X-bar of Spines”.  It can be 

described as an X-bar pattern in which all of the original terminals have been replaced 

with spines. Its characteristic polynomial is x3 – 2x2 +1.  That is the X-bar polynomial 

times an additional linear factor of (x – 1); this growth factor of 1 is diagnostic of spinal 

structure. 

  I leave the matter here for now, noting that further exploration of phrase structural 

properties in the terms laid out here may well yield further relevant insights. 

 

7.6 Conclusions 

This chapter has explored a number of properties of the X-bar phrasal organization, and 

shown how they are deeply related to “golden” mathematics.  The discussion has gotten 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 From this observation, it follows that the growth factor of a degenerate system will be equal to the largest 
growth factor among its components.  This is so because no new roots are picked up by multiplying 
polynomials; factors of the product must be factors of one of the components. 
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quite abstract, for a putative work of linguistics.  It is time to step back from the minutiae 

to get some perspective on what has been established here. 

  I reviewed the family of mathematical objects described as golden, including the 

golden mean, the Fibonacci numbers, and the golden string, and pointed out a unifying 

theme in the form of a common recurrence relation describing each of these objects.  This 

took the form of a polynomial, an addition relation, and a string concatenation formula.  I 

showed that the X-bar schema satisfied the natural syntactic manifestation of the same 

kind of “golden” recurrence: 

71) SOn+2 = SOn+1 + SOn 

I suggested that the X-bar form represents a compromise between irreconcilable 

requirements on syntactic structure, favoring opposite poles of branching form.  The local 

skeleton of the X-bar schema is literally both a Spine and a Bush, the largest object to 

span the gap between the opposite extremes of binary branching forms.  Related to this 

fact, the X-bar schema is the last (most complex) of the generalized X-bar forms, each 

globally optimal among their class of alternatives of matched complexity, that is also 

locally optimal in its class.   

  Next, I suggested an interpretation of syntactic patterns in terms of divisions of a 

line segment.  Under that understanding, the X-bar form is a “golden” fractal (in fact, a 

multi-fractal), the simplest kind of scheme inducing fractal structure on the line.  As I 

showed there, its Hausdorff dimension is this value: 

72) Dim = log2(Phi) 
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Finally, I turned to another way of quantifying growth properties of various phrase 

structure systems.  Writing the recurrence relations of a given phrasal pattern in matrix 

form, we see that limit of the ratio of the number of syntactic objects at successive 

generations of maximal expansion is the characteristic root of the polynomial ssociated 

with that matrix.  In the case of the X-bar schema, this growth factor is Phi.  In that 

section, I also explored further terrain of interest, listing growth factors for the “pure” 

(non-degenerate) systems one step beyond the X-bar class, and noting a connection 

between syntactic composition and polynomial factorization for degenerate systems. 

  Setting all of this in a broader context, the point of detailing the intricate 

relationship of the X-bar syntactic pattern to “golden” mathematics is to point the way to 

eventual deeper understanding that transcends the narrow facts of syntax.  In this regard, 

it seems promising that other “golden” patterns in nature have an intriguingly robust 

character.  This is clearest in the domain of plant growth (phyllotaxis), where Fibonacci 

spiral forms dominate the phenomenology.  As shown especially by Douady & Couder 

(1992), this pattern in plants is virtually inevitable, given a broad range of growth 

conditions.  The explanation for that pattern revolves around a self-organizing process, 

dynamically optimizing the spacing of elements at a very local level around the meristem.  

  Similar patterns can be found “closer to home”, so to speak, even in human 

biology.  For example, Goldberger et al (1985) document asymmetry in bronchial 

branching, across many species of mammals (including humans), "consistent with a 

process of morphogenetic self-similarity described by Fibonacci scaling."  More 

intriguingly, golden mathematics has been found even in the functioning of brain tissue.  
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Roopun et al (2008) report that EEG rhythms in in vitro human cortex are spaced 

according to the golden mean; in their words, by “using phi as a common ratio between 

adjacent frequencies in the EEG spectrum, the neocortex appears to have found a way to 

pack as many, minimally interfering frequency bands as possible into the available 

frequency space.” (Roopun et al 2008)   

  In other words, the least rational character of the golden mean provides something 

like an “optimal packing solution” for cortical rhythms.  In much the same way, golden 

angle spacing among successive primordia leads to Fibonacci spiral modes in phyllotaxis, 

a (dynamically) optimal packing solution in space.  It is possible that the golden 

mathematics of the X-bar schema likewise represents a kind of optimal packing solution 

for syntax, a robust, perhaps even inevitable minimax solution.   
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CHAPTER 8: 
CONCLUSION 

 
 

8.0 Overview 

In this dissertation, I have proposed a notion of “economy of command,” a geometrical 

constraint on syntactic structures. I have argued that endocentricity and detailed patterns 

of movement fall out as simple reflexes of minimizing the number of c-command 

relations in binary-branching trees. That looks promising, as these properties are long-

standing problems. Endocentricity, lately discussed in terms of projection or labeling, has 

long been a bugbear of syntactic theory, and finding real explanations for patterns of 

movement has always been a central concern. I have argued that these properties follow 

from economy of command. If that is on the right track, these properties of syntax may 

dissolve as a kind of “third factor” effect (Chomsky 2005), following not from genetic 

instructions, nor from aspects of the linguistic environment, but rather from a very 

general computational principle that is in some sense “beyond” the biological and 

historical particulars.  

  However, as I have emphasized throughout, this is only a preliminary investigation 

of these matters. Many central questions remain open; it is time to gather the dangling 

threads and say something about where to go from here.   

 

8.1 Minimizing c-command relations 

The cornerstone of this work is the idea that long-distance dependencies are costly in a 

way that matters to linguistic conditions, and that syntactic structure building should 



	
   260	
  

minimize the number and length of these relations.  This depends on a particular view of 

how to evaluate the cost associated with these relations. 

  In particular, I pursued the idea that syntactic structure-building proceeds by 

iterated computational cycles, called phases, and that after each phase is constructed, the 

resulting partial representation is subject to interpretation at the interfaces with non-

syntactic systems.  A crucial element of this cyclic interpretation is the “reading” of c-

command (or dominance) relations into long-distance interpretive dependencies 

(including linear order, agreement, and binding).   

  Decades of syntactic research indicate that c-command and/or dominance relations 

describe the pathways for these dependencies.  Moreover, there is robust evidence for a 

locality preference in these dependencies, such that the shortest available structural 

pathway is chosen to host the relevant dependency.  Conceiving of the establishment of 

these dependencies as a kind of computation, it is natural to suppose that this 

computation should be minimal, with steps that are as simple and few in number as 

possible.  This kind of minimization is achieved by structures with the fewest and 

shortest computable pathways, I have argued. 

  I briefly reviewed some reasons to think that it is in interface representations where 

the cost of c-command relations is incurred.  This claim is required for the theory of 

movement developed here to be coherent.  Current thinking has it that within syntax, 

movement produces a chain of copies of the moving object. If such chains are visible in 

full to the computation of long-distance dependencies, it would seem that movement only 

ever makes things worse, so to speak; it strictly increases the number and length of c-
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command relations in the tree.  However, it seems that with respect to interpretation, only 

one copy in the chain is visible, typically the highest; other copies collapse or are 

invisible.  In that case, movement can indeed reduce the number of hierarchical relations 

present, and so (by hypothesis) make for a more easily interpretable structure. 

 

8.2 Movement as tree-balancing 

The crucial ingredients in the analysis of movement developed here are that (i) c-

command relations “count” in interface forms, where (ii) movement has applied to reduce 

the overall number of such relations, given that (iii) the interface processes that “read” c-

command relations typically see only the highest copy in a chain (the other copies 

collapsing as traces). 

  I hypothesized that syntactic movement is governed by the Fundamental Movement 

Condition (FMC), such that only movements that satisfy the FMC are possible 

movements in some human language.  Taking a to be the number of nodes in the moving 

object, b to be the number of non-moving nodes, and s to be the number of nodes in the 

spine from the root of the non-moving object to the trace of the moved object (inclusive), 

the FMC can be stated as: 

1) Move alpha only if (a-1)(s-2) > b+1 

I showed how a number of constraints on syntactic movement could be derived as 

consequences of the FMC.  The first such consequence is a form of Antilocality: if the 

FMC holds, objects immediately dominated by the root node cannot be moved. I pointed 

to a number of independent proposals in the literature that confirm this constraint on 
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empirical grounds. I also described a size threshold effect, such that a larger candidate for 

movement within a fixed embedding context will be more strongly driven to move than a 

smaller candidate object in the same position (and too small an object – a terminal, or a 

pair of terminals – cannot move at all). I suggested that the size threshold effect could 

explain the relationship between Object Shift and definiteness (taking definites to be 

more extended nominal projections than indefinites, hence larger objects), to the 

correlation between agreement on P and movement (creating postpositions), and to the 

different movement trajectories for different kinds of nominals (Cardinaletti 2004). 

  The FMC also predicts a Symmetric Island Condition that I suggested as a source 

for the Coordinate Structure Constraint of Ross (1967), though noting a conflict with the 

treatment of small clauses in Moro (2000).  On the present analysis, points of symmetry 

(non-terminals with two daughters of equal size) should be islands, in that the symmetric 

daughters are always less favored to move than the object containing them. 

  Finally, I described the kinds of movement that would be expected to arise from 

this view of movement, considering how the conditions favoring various kinds of 

movement changed under iteration.  I noted that one pattern of extremely-local 

movement, corresponding to roll-up or snowballing movement deriving mirror orders, 

was expected to “take off” under positive feedback (though eventually bled by another 

type of movement I called “skipping”).  I explored roll-up movement in some detail, 

focusing on Malagasy, showing that the rather mysterious ordering facts in that language 

might fall out from tree-balancing movement driving a roll-up pattern.  I noted, following 

Rackowski & Travis (2000), that the presence of a form of Object Shift interacting with 
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roll-up movement in this language seems incompatible with an analysis that describes the 

ordering facts in terms of variable head-complement order without movement.  Another 

curious fact they note, that the deepest pair of adverbs may appear in un-rolled-up order, 

also is as expected on the present analysis.  That is, if roll-up movement is driven by tree-

balancing concerns, the first step in that pattern of movement (the one that would invert 

the order of the two adverbs in question) is the most weakly driven, hence the likeliest to 

be omitted or optional. 

 

8.3 On Cinque’s Generalization 

In chapter 5, I outlined how the array of orders of demonstratives, numerals, adjectives, 

and nouns attested in the world’s languages could follow from the view of movement 

developed here.  I showed that we can find possible shapes for the universal base tree 

underlying nominal phrases, such that all and only the attested orders can be derived 

through zero or more movements that strictly obey the FMC. I indicated the range of 

possibilities admitted, and suggested that there was a reasonably good match between the 

trees allowed under this account, and the independent proposals of DP cartography, e.g. 

in Cinque (2005) and Svenonius (2008). 

  A critical issue for expanding the present work is to develop analytical techniques 

that dispense with the assumption of “coherence” adopted in chapter 5.  Recall that that 

condition stipulated that, whatever the shape of the individual subtrees containing the 

four landmarks Dem, Num, Adj, and N, those subtrees had hard boundaries, such that 

movement never reached inside the subtrees, but only rearranged them with respect to 
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each other.  This was an important analytical wedge to make the study tractable, but it is 

clear that ultimately we would like to dispense with this condition.  Instead, we hope to 

find that the “seams” in the base structure where movement may occur arise naturally 

from minimization of the number and length of c-command relations.  On this view, 

conditions of optimization cause the shape to fold in characteristic ways. 

  One troubling issue is that the explanation for Cinque’s Generalization offered here 

is structurally contingent.  Put another way, this theory would allow violations of 

Cinque’s Generalization, if the base structure were different.  This raises a number of 

questions, especially with respect to the apparent fact that Cinque’s Generalization holds 

for other domains as well (e.g., in verb clusters).  This is expected on the present account 

only insofar as distinct domains fall into the same class of base tree structures; domains 

with different structure could in principle support distinct patterns of movement, 

including remnant movement. 

  Schlenker (1999) proposes a strong form of parallelism between domains quite 

explicitly, for the semantic level at least, in his Semantic Uniformity Hypothesis: 

“Hypothesis of Semantic Uniformity: Universal Grammar uses the same 
distinctions (features) and the same interpretive procedures for reference 
to individuals, times, and possible worlds. Specifically: a. Every 
interpretable feature that exists in one domain can (in principle at least) 
exist in every other domain as well. b. The interpretive rules for those 
features are the same across sortal domains.” (Schlenker 1999: 11) 
 

  In a footnote, he expands on this: “There is a more general way of stating this 

hypothesis: ‘The interpretive system is domain-neutral’. Every interpretable feature and 

every interpretive rule exists in every sortal domain (individuals, times, worlds, and 

probably events as well).” (ibid.)  Of course, Shlenker is proposing uniformity of 
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interpretation across distinct domains, a slightly different matter from structural 

uniformity.  However, uniformity of interpretation is certainly compatible with uniform 

structure.  In the next section, I delve into the issues regarding variation in the base 

structure in more detail. 

 

8.4  The nature of cross-linguistic syntactic variation. 

The most important issue to address, in my view, is the nature of cross-linguistic 

variation.  Is there really a single base structure effectively present in all languages?  If 

not, are the differences between the base structures of different languages constrained 

enough to admit mathematical exploration?  For the sake of saying something concrete, I 

have adopted a very strict view of the nature of cross-linguistic syntactic variation (that 

there is none, except a different choice of possible movements).  That gives a very spare 

account of variation (perhaps not a bad thing).  But there remains something unsatisfying 

in the account, an element of random chance that some set of movements rather than 

another, is actually found in some language.  Why not insist instead that the very best 

movement available (itself a notion that needs careful clarification) must be chosen, a 

form of strong optimization? 

  There is a fundamental tension between variation and optimization.  One 

reasonable hypothesis is that structures do vary, and each language is finely optimized 

with respect to the particular base structure it selects.  Such a view leads, naturally, to 

rich predictions at a diachronic level: given a change in structure (perhaps reflected in 

morphology, e.g. more or less articulated paradigms of agreement), how should 
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optimized movement adjust? Or perhaps the predictions could go the other way: finding 

evidence for some movement in the primary linguistic data, how does the inferred 

relevant structure get adjusted? 

  If we adopt the further restriction that possible base structures are spinal, we have a 

very restrictive “window” for cross-linguistic variation: this is a good thing, in that it 

makes narrow and testable predictions.  In particular, we expect on this view that cross-

linguistic differences can be explained, to a significant degree, by a simple counting 

measure, the number of positions in each portion of the tree.  These may vary due to 

differential growth, or collapse of a more articulated universal structure into a smaller set 

of language-particular distinctions.  We may treat both cases in terms of allowing a more 

or less extended spine in each category space. 

  Insofar as movement is driven by tree-balancing, and the base structure of any 

language is a more or less extended spine, then we might maintain stronger claims about 

optimization and uniformity of movement, with cross-linguistic variation reducing to, 

first, how large a spine is involved, and second, how universal categories are collapsed 

into the language-particular categories.  We might, for instance, suppose that two 

languages with different word orders might actually have the same size base tree and the 

same abstract movements, though with corresponding categories more or less extended 

and so found on different sides of the rigidly predictable “cuts” made by movement.   

  Another hypothesis, more in line with the assumptions pursued in Chapter 5, is that 

the base structure is truly universal, and the typological frequency of various possible 

orders reflects their relative optimality compared to alternative derivations, and/or a kind 
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of “sum over histories” approach, with those orders that can be derived in more ways 

being more frequent.  Then the question becomes one of “tuning” the assumed base 

structure to see how good a fit can be achieved to the data on cross-linguistic frequency 

of the different orders.  Such a tuning would be a narrowing of the range of possible 

structures for the base, and so a sharpening of cartographic predictions.  

  

8.5 Phrase structure 

I argued in Chapters 6 and 7 that properties of phrase structure, as captured by X-bar 

theory and the notion of endocentricity, can be seen as following from more general 

principles.  In particular, I suggested that generalized X-bar structures follow naturally in 

a syntactic system sensitive to economy of command, as those phrasal patterns build 

bushier trees than any competitors.  In Chapter 7, I pointed out that the one-specifier X-

bar form is particularly natural, in light of its connection to “golden” properties which 

show up so robustly in other domains. 

  It might seem that the endorsement of these structural patterns is at odds with the 

spinal nature of the base structure revealed by cartographic studies.  However, there is no 

real conflict here.  On the one hand, the Spine itself is, in fact, one of the optimal 

generalized X-bar forms.  As such, finding such a form in natural language does not 

contradict the predictions about phrase structure made here; rather, such a finding is 

merely uninformative.  What would contradict these predictions would be the discovery 

of some non-trivial phrasal pattern that was not a generalized X-bar form (for example, 

the phrasal format I called D-bar). On the other hand, we need not suppose that the 
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optimal phrasal patterns are realized in the base structure.  Rather, given the claim 

defended here that what matters is the form of interface representations, we expect that 

optimal phrase structure can as well be achieved by movement as well as in the base (i.e., 

by Internal as well as External Merge).  In a sense, then, the concerns about phrase 

structure here can be seen as the static, abstract version of the concerns about movement, 

which were framed derivationally.  Before concluding this work, I turn to one last 

possible application of the view of movement as a form of structural optimization. 

 

8.6 Optimizing movement by phase: A-movement and A-bar movement 

Where can we go from here?  One further development of central interest, which 

considerations of space prevented me from exploring, is a consideration of how 

movement would be expected to be optimized at the phase level.  Taking the simplest 

case, what is the best single movement within a phase?  The FMC provides a rather direct 

(though vague) answer: the best movement is the one that moves as large an object as far 

as possible.  As noted, there is a fundamental tension between these two conditions.  

Consider the case of an object A immediately embedded inside another B: B is larger (it 

includes all the nodes in A, and more besides), but it is also closer to the root, hence A 

would move farther. 

  However, if we are optimizing movement at the level of phases, it is clear where 

the endpoint of the longest movement would be. Within a single phase, the longest 

possible movement is to the top of the tree, landing in the specifier of the Phase head (the 

edge).  This is a simple conclusion, but the consequences may be profound: this is exactly 
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the kind of structural pattern that we see in A-bar movement.  It suggests that A-bar 

movement can be understood in purely structural terms, as movement optimized at the 

phase level, a welcome result. 

  Movement to the phase edge is optimal if only a single phase is considered.  

However, phases are often embedded inside other phases, and there a problem arises.  

Precisely because the locally best movement reaches the edge, it remains “live” in the 

embedding context, where it may undergo successive-cyclic movement.  Supposing that 

interpretation proceeds phase by phase, the moving object will enter into relations in each 

new phase it enters (cf Pesestsky & Fox 2005 for a treatment of linearization along these 

lines).  By optimizing locally, we have “passed the buck” to the next higher phase, 

creating a problem that propagates at a global level. 

  If we were allowed to be a little more clever about it, we might settle on a slightly 

suboptimal movement within a phase that does not give rise to problems in further phases 

that embed it.1  The best movement would then be one that moved as far as possible 

without reaching the Edge: such a movement would stop in the specifier of the phrase 

immediately dominated by the phase head. 

  This is a particularly exciting prediction, as it matches up with a set of phenomena 

that are empirically well-motivated, but theoretically mysterious.  I am referring to the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Of course, this leads us to expect that non-embedded phases might behave slightly differently. 
Specifically, they should permit more “excess” in the form of A-bar movement, since it will not be 
penalized within any higher phases.  One wonders if an account of so-called Root phenomena (Emonds 
1970) can be constructed in these terms.  Indeed, something like V2 in German looks like a promising 
candidate for this approach.  Simplifying crudely, matrix clauses exhibit V2 while embedded clauses 
usually do not.  V2 is standardly analyzed as movement of the verb to the C position, with attendant 
movement of an XP to Spec, CP (Koster 1975, den Besten 1983).  This is the predicted kind of root 
phenomenon, with extra movement to the Edge (only) in non-embedded structures.   
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EPP (Chomsky 1981), a requirement that the specifier of TP (or AgrSP, in some 

formulations) be filled (see also Chomsky 1995b, Lasnik 2001a), and to Raising-to-

Object movement (first proposed by Postal 1974; see also Johnson 1991, Koizumi 1993, 

Lasnik & Saito 1991, Lasnik 2001b), often described as displacing the object to the 

specifier of AgrOP.  What is significant, from the present perspective, is that the landing 

sites of these movements are just below the phase heads C and v.2 In other words, EPP 

movement and Raising to Object are movements to just below the Edge of a phase.   

  I believe that such an account of these patterns of movement, as a form of structural 

optimization with respect to phases, would be an important development.  In particular, 

this account could offer a way to understand the curious “promiscuity” of the EPP: 

Alexiadou & Anagnostopoulou (1998) argue that the EPP is not a feature requiring 

movement of a DP (as proposed by Chomsky 1995b); rather, the EPP can be satisfied by 

moving verbal rather than nominal categories (in so-called predicate-fronting languages). 

If the real motivation for the EPP is structural rather than featural, this pattern makes a 

good deal of sense; what matters is that a large piece of syntactic material be moved to 

this position, regardless of the contents and features thereof. However, concerns of space 

and time require that further development of this idea be left to later research. 

 

 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 If Raising to Object movement is real, and English verbs move to little v, then the obligatory adjacency of 
verbs and their direct objects indicates that this description is correct (i.e., the object moves to the specifier 
immediately below the phase head little v). 
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8.7 Final remarks 

This brings us to the end of this dissertation. I have attempted to construct explanations 

for some core syntactic phenomena in terms of economy of command.  The explanations, 

while novel, draw on rather well-established pieces of syntactic theorizing: that c-

command and/or dominance is a crucial relation in linguistic expressions, and that there 

is a preference, all else equal, for syntactic structures to be such as to minimize the 

burden of computation. This work can be seen as an application of two central ideas of 

the Minimalist Program: a concern for economy in representation or derivation, and an 

assimilation of syntactic conditions to constraints imposed by systems external to syntax 

(interface or bare output conditions).   

  However, as I have emphasized throughout, this work is but a first step towards 

building a new theory of syntax based on economy of command. Establishing a firmer 

foundation for these ideas, and testing their applications more rigorously, is next on the 

agenda.  The project is promising, I think, but it has barely begun. 
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APPENDIX A: DERIVATION OF THE DP CONDITION 

A.0 Overview 
 
In this appendix, I provide the (quite involved) mathematical considerations underpinning 

the DP Condition provided in Chapter 5. This condition is a large conjunction of 

inequalities holding over variables tracking the relevant structural parameters of possible 

underlying base DP trees.  The idea is that base structures lead to all and only the attested 

orders if their structural parameters satisfy the DP condition.  The individual inequalities 

in the DP condition are individual applications of the Fundamental Movement Condition 

described in Chapter 4 to possible movements in the derivation of attested and unattested 

orders. For each attested order, we insist that there is at least one derivation such that 

each step of movement satisfies the FMC; for each unattested order, we insist that no 

derivation of the order satisfies the FMC. 

  The data we have in hand are the presence or absence of each of the 24 logically 

possible orders of demonstratives, numerals, adjective, and noun (henceforth D, M, A, N, 

respectively) within the DP, in a large sample of the world’s languages.  By hypothesis, 

each of those orders is derived by leftward movement affecting a base DMAN hierarchy.  

The task now is to infer the movements that derive the attested orders (and later, the 

movements deriving unattested orders), and determine the structural conditions that must 

be satisfied for each instance of movement to reduce c-command totals. 

  This is not as straightforward as it sounds, as all we have is evidence of the output 

of the transformations; we must recover the transformations themselves.  In many cases, 

several derivational routes lead to the same surface order.  Consider, for example NDMA 
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(noun demonstrative numeral adjective) order, by hypothesis derived by movement of NP 

by itself to the top of the tree.  This could be derived by a single, “one fell swoop” move 

of NP.  Alternatively, NP could have moved successive-cyclically through one or more 

intermediate positions, leaving a trace and an extra layer of structure in each, I assume.   

  With just three coherent/indivisible pieces of structure (say, M, A, N, as in 

Greenberg’s Universal 18), the possibilities to consider are quite reasonable.  However, 

once we allow four pieces (D, M, A, N), the possibilities explode.  In practice, the 

complexity is just on the verge of tractability; below I develop some well-motivated 

heuristics to narrow the space of possibilities.   

 

A.1 Leapfrogging 

To get a first look at the combinatoric landscape here, consider just the ‘base’ order 

DMAN.  There are (at least) 6 distinct derivations of this order worth considering, all but 

one involving a form of ‘leapfrogging’, destroying and then recreating the base linear 

order.  This is, needless to say, a horrifying degree of complexity for what is usually 

taken to be a single derivation; if even the seemingly underived base can be derived by 

movement in six distinct ways, what of other orders? 
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1) a.             b.                              c.                  d.   
 
 
 
 
 
           e.                          f. 
 
 
 
 
 
Notice that we may rule out (via Antilocality) these configurations: 
 

2) a.         b.         c. 
 
 
 
 
At first, it might seem like this could get completely out of control, potentially enabling 

infinite loops of movement.  However, we can formulate a Squeezing Lemma 

demonstrating that there is a limit to such leap-frogging movements, under the crucial 

assumption that movement must always improve tree balance. 

  Suppose some fixed amount of structure has been Merged.  Then there is some 

maximum number of c-command-reducing movements m that could apply to this 

structure before more material is Merged (and so, if the amount of material to be Merged 

later is finite, so is the number of movements enabled, still).  We can formulate this in 

terms of ‘squeezing’: each instance of movement adds 2 nodes to the tree, strictly 

increasing the minimum total number of c-command relations in the tree.  But movement 

is, by hypothesis, constrained to strictly reduce the number of c-command relations in the 

tree (in practice, always by at least 2).  So, given a base tree structure with a total number 

of c-command relations somewhere in the spectrum between minimal (Bush) and 



 

 

275 

maximal (Spine), each movement must carry the c-command total an increment of at 

least two units down toward a monotonically-rising floor. Recall that for a given number 

of nodes, the possible number of c-command relations in the tree fall within a band 

between the maximum (associated with a uni-branching Spine) and minimum (associated 

with the maximally shallow, symmetric Bush) values. Then we can understand the 

Squeezing Lemma graphically, as below: 

 
                                     
                                  The Spine has the maximum number of c-command relations. 
     # of c- 
   command               The number of c-command relations in an arbitrary tree 
   relations                  must fall within this band. 
                                          
                                  The Bush has the minimum number of c-command relations. 
                                      
                                      
 
                              Movement is constrained to strictly decrease 
                                     the number of c-command relations in the tree. 
     # of c- 
   command  
   relations                    These must meet in the middle in a finite number of steps. 
                                            
 
                                     Because each move adds nodes, the minimum 
                                     total number of c-command relations increases. 
Figure 8: The squeezing lemma illustrated. 
 
Consider in more detail the ‘leapfrogging’ movement at issue.  Let us consider a simple 

case of three elements: once they all have been placed in left branches by movement, can 

further movements apply?  There are two reasons why there cannot be another complete 

leapfrogging cycle.   
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3)  
 
 
 
 
 
   

First, we can take a global perspective: the final (post-second-leapfrog) configuration has 

strictly more c-command relations than the initial (one leapfrog) configuration.  Thus, 

clearly, it cannot result from a series of movements that strictly decrease the total number 

of c-command relations.   Second, we can take a local perspective, and show 

algebraically that the inequalities motivating this set of movements cannot be 

simultaneously satisfied.  

  However, the first cycle of leapfrogging, starting with a stack and ending with 

layers of left branches, can in principle be motivated at each step (for an appropriate 

choice of structural variables n, a, m, d, s, t, u).  For the solutions I have examined (to just 

the leapfrogging condition corresponding to (1b) above, not incorporating the wider set 

of inequalities based on the attested/unattested orders), it seems that n must be the 

smallest, and d the largest, of {n, a, m, d}.  In particular a and m must be large enough to 

trigger movement of A and M, an option apparently ruled out in natural language. 

  In fact, if we are willing to say that A and/or M remnant movement is ruled out 

systematically, on the basis of empirical evidence (i.e. the lack of orders, such as ADNM, 

that would arise via “remnant” movement of [A tN] in [D [N [M [A tN]]]]), then the 
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picture is simplified radically.  In fact, for order DMAN we need consider none of the 

alternatives outlined in (1b-f), as they all involve movement of an A or M remnant. 

  I leave for future work a more detailed and rigorous investigation of such 

combinatoric complexity, here making use of well-motivated heuristics to trim down the 

possibility space, generally considering only the best/most reasonable derivations of the 

various orders.  I develop and defend this methodology below. 

 

A.2  Excluding successive-cyclic movement 

With respect to the derivations of unattested orders, I systematically exclude derivations 

in which the same category moves successive-cyclically to multiple landing sites.1  The 

reason for this is straightforward: we are concerned with finding only the weakest (most 

easily satisfied) structural conditions that can be motivated on the basis of the data on 

attested and unattested surface orders.  It can be demonstrated that, for a particular 

moving category α, it is always easier to motivate a single one-fell swoop movement than 

a conjoined series of shorter movements.  I illustrate the reasoning below. 

  Suppose that we find, on the surface, that category α has moved past two 

dominating categories, β and γ, with spinal depths s and t, respectively. 

4) a.        b.         c. 
    γ   t      α                 γ                     α                γ 
                 
         β        s           β          tα 
 
           α 
  Base structure      One fell swoop movement  Successive-cyclic movement 
                                                
1 To be clear, this in no way bears on the undoubted existence of such movement, at the very least at the CP 
level.  The point here is purely a matter of mathematical logic. 
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We can apply the FMC ((a-1)(s-2) > b+1) to the single movement in the one-fell-swoop 

derivation, and the pair of shorter moves in the successive-cyclic derivation. 

5)  One fell swoop:  (OFS) (a-1)([s+t-1]-2) > [b+c-1]-1  (a-1)(s+t-3) > b+c-2 
 

6)  Successive-cyclic:  
   a. first step:  (SC1)  (a-1)(s-2) > b-1 
   b. second step: (SC2)  (a-1)([t+1]-2) > [b+c+1]-1   (a-1)(t-1) > b+c 
 
Crucially, to motivate the successive-cyclic derivation, both inequalities must be 

simultaneously satisfied.  We proceed by showing that whenever both the successive-

cyclic conditions can be met, the one-fell-swoop condition is necessarily satisfied as well, 

and further that the OFS condition can be met when the conjoined SC conditions cannot. 

  Compare the condition motivating the second step of movement in the successive-

cyclic derivation (SC2) to the one-fell-swoop (OFS) condition. 

7)  OFS: (a-1)(s+t-3)      >  b+c–2  
     = (a-1)(t-1 (+s–2)) >   b+c (–2)  
 

8)  SC2: (a-1)(t-1)       > b+c 
 
Notice that in SC2 we multiply the term (a-1) by a factor (s-2) units less than in OFS, and 

insist that the product is 2 units more than the product in OFS.  But by Antilocality, we 

know that s is at least 3 (thus (s-2) is at least 1); likewise by the minimal size condition, a 

is at least 5 (so (a-1) is at least 4).  The left hand side of the OFS condition is larger than 

the left hand side of SC2, while the right hand side is smaller.  Holding the rest of the 

variables constant and examining permitted values of a, we see that more values of a can 

satisfy OFS than can satisfy SC2, and every value of a satisfying SC2 also satisfies OFS.  

That entails that OFS is a weaker condition than conjoined SC (SC1 and SC2).  Suppose 
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the conjoined SC is satisfied; then so is SC2. Then the OFS is necessarily satisfied as well 

(conjoined SC ⇒ OFS).  Suppose the OFS is satisfied; SC2 need not be satisfied, and so 

the conjoined SC need not be (OFS ¬⇒ SC). This is the desired result. 

  In the present context, we insist that at least one derivation of any attested surface 

order must be motivated by tree-balancing.  Clearly, then, we need not consider any 

derivations involving successive-cyclic movement.  This ensures us that the figure above 

is not missing any derivations we should be considering; it contains all and only the non-

successive-cyclic derivations of the possible surface orders (also meeting the ‘Cinque 

condition’ barring remnant movement, inductively motivated from this distribution of 

orders2).  Notice that some orders have several possible derivations (notably x, with 5 

distinct underlying derivations)3.   

  The same reasoning does not extend to the derivations we must consider for 

unattested orders.  In that case, rather than trying to rule in the “best” routes to those 

orders, we must rule out even quite marginal derivations.  Furthermore, the derivations in 

question are those that involve remnant movement.  For the unattested orders, because I 

assume that remnant movement is not involved, successive-cyclic movement typically 

only adds material to the non-moving part of the tree4.  However, once remnant 

                                                
2 That is, we must admit that some of the orders here—namely, those analyzed as involving ‘pied-piping’ 
movement (of N plus A and maybe M)—could in principle also be derived by remnant movement.  
However, it is telling that the orders that could only be derived by remnant movement (e.g., ADNM) are 
systematically absent.  Simplifying, I assume such movement is ruled out across the board. 
3 It is interesting to note that the derived order with the most underlying derivations here (namely, the 
rolled-up mirror image of the base, (x) NAMD) is also the most common derived order.   
4 It might seem that this fails for attested orders that move a small category first, then a larger category 
containing the moved object and its trace. In that case, the extra movement matters, as it adds material, and 
so could add just enough material to enable movement that would be blocked without the extra previous 
step of movement.  However, with four coherent subtrees, this comes up, as far as I can see, in only one 
order: NMAD.  That order is derived by first moving N past M and A, then moving the whole past D.  If N 
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movements are considered, possible derivations of unattested orders can in principle 

move the extra material associated with successive-cyclic movement.  On the whole, we 

will have to consider a wider array of derivational choices with the unattested orders. 

Before getting to the complexities, I start with the somewhat more straightforward matter 

of ruling in all attested orders. 

 

A.3 Attested orders 

Recall from Chapter 5 the convention of using variables to track relevant parameters of 

the  tree structure.  These are d, m, a, n for the number of nodes in D (demonstrative), M 

(numeral), A (adjective), and N (noun). For D, M, and A we also need a variable for their 

depth, here u, t, s, respectively.   

  We can immediately set some bounds on the permitted values. First, the variables 

must be strictly positive integers:   

9)  a, n, m, d, s, t, u > 0 

Moreover, a, n, m, d must be odd. There is a further relationship between the total nodes 

in a category, and the spinal depth of that category.    

10)  a > 2(s-1); m > 2(t-1); d > 2(u-1) 

Next, I reproduce Figure 2 from Chapter 5, now numbering each step of movement. 
                                                
moved successive cyclically past A before moving to the left of M, that would add nodes to the NMA 
object, making it more strongly driven to move.  However, note that we find order MAND, which results 
from movement of the undisrupted MAN object past D. Since that is necessarily ruled in, we need not 
worry about making the moving object NMA bigger still; if the movement deriving MAND is motivated, 
so is the movement deriving NMAD, without successive-cyclic movement of N. NMAD could also be 
derived by moving N from the configuration in MAND, or MNAD. In the second case, NMAD is derived 
from MNAD, by first moving N to the left of A, then moving MNA past D, then finally extracting N.  But 
this is more weakly motivated than extraction of N directly from MAND, derived by a single leftward 
movement past D; this derivation is considered explicitly.  If these methods were to be extended to larger 
hierarchies, this issue would require more careful consideration. 
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                     na             12 x4 namd 
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                     4      nam1 
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          16      a dman  8 
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            t1 nmad   d ndma 
 
Figure 9: Derivations of attested orders considered in this work. 

 
In the figure above, large double arrows represent External Merge operations, while the 

thin arrows represent Internal Merge (movement).  The movement arrows are also 

numbered, as we will need to refer to the movements.  First, we can reorganize the 

information in the figure above, listing for each attested order, which movement(s) were 

involved in its derivation. 
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Order Movements 
a base order: no movement 
b 1 
c 2 
d 8 
k 7 
l l1: 7, 19 

l2: 1, 14 
n 3 
o o1: 3, 4 

o2: 1, 5 
p 3, 10 
r 6 
s 1, 15 
t t1:  6, 16 

t2:  2, 9 
w w1: 6, 17 

w2: 3, 11 
x x1: 6, 17, 18 

x2: 3, 11, 20  
x3: 1, 15, 21 
x4: 3, 4, 12  
x5: 1, 5, 13  

Table 7: Movements involved in deriving each attested order 
 
In Table 7, some of the numbered steps are marked with strikethrough; this indicates that 

they occur higher in the list as the only way to derive some order, and so need not be 

listed again. Next, for each movement, we can write the relation among the structural 

variables that must hold for that movement to reduce the number of c-command relations 

in the tree. 

Conditions: 
1. a+1 < (s-2)(n-1) 
2. m+a < (s+t+3)(n-1) 
3. m+1 < (t-2)(a+n-2) 
4. a+m+2 < (s-1)(n-1) 
5. m+1 < (t-2)(n+a) 
6. d+1 < (u-2)(a+n+m-3) 
7. m+d < (t+u-3)(a+n-2) 
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8. a+m+d-1 < (s+t+u-4)(n-1) 
9. d+1 < u(a-1) + (u-2)(n+m) 
10. a+m+d+1 < (s+u-2)(n-1) 
11. d+1 < u(n-1) + (u-2)(a+m) 
12. d+1 < (u-2)(a+n+m+1) 
13. d+1 < (u-2)(a+n+m+1)   
14. m+d < (t+u-3)(n+a) 
15. d+1 < (u-2)(a+n+m-1) 
16. a+m+d-1 < (s+t-2)(n-1) 
17. m+d+2 < (t-1)(a+n-2) 
18. a+m+d+3 < (s-1)(n-1) 
19. a+m+d+1 < (s-1)(n-1) 
20. a+m+d+3 < (s-2)(n-1) 
21. m+d+2 < (t-1)(a+n) 

 
To motivate a single movement in these terms, the inequality given above must be met. 

To motivate a series of movements, each individual movement must be motivated. For 

orders that have multiple possible derivations, I only insist that at least one derivation is 

motivated. So, eliminating redundancies, we have this: 

11)  1 & 2 & 8 & 7 & (19 | 14) & 3 & (4 | 5) & 10 & 6 & 15 & (16 | 9) & (17 | 11) & 
((17 & 18) | (11 & 20) | (15 & 21) | (4 & 12) |  (5 & 13)) 

 
Filling this in with the indicated inequalities, we obtain the following expression. 
 

12) (a+1 < (s-2)(n-1)) & (m+a < (s+t+3)(n-1)) & (a+m+d-1 < (s+t+u-4)(n-1)) & (m+d 
< (t+u-3)(a+n-2)) & ((a+m+d+1 < (s-1)(n-1)) | (m+d < (t+u-3)(n+a))) & (m+1 < 
(t-2)(a+n-2)) & ((a+m+2 < (s-1)(n-1)) | (m+1 < (t-2)(n+a))) & (a+m+d+1 < (s+u-
2)(n-1)) & (d+1 < (u-2)(a+n+m-3)) & (d+1 < (u-2)(a+n+m-1)) & ((a+m+d-1 < 
(s+t-2)(n-1)) | (d+1 < u(a-1) + (u-2)(n+m))) & ((m+d+2 < (t-1)(a+n-2)) | (d+1 < 
u(n-1) + (u-2)(a+m))) & (((m+d+2 < (t-1)(a+n-2)) & (a+m+d+3 < (s-1)(n-1))) | 
((d+1 < u(n-1) + (u-2)(a+m)) & (a+m+d+3 < (s-2)(n-1))) | ((d+1 < (u-2)(a+n+m-
1)) & (m+d+2 < (t-1)(a+n))) | ((a+m+2 < (s-1)(n-1) & (d+1 < (u-2)(a+n+m+1))) | 
((m+1 < (t-2)(n+a)) & (d+1 < (u-2)(a+n+m+1)))) 
 

This forms the portion of the DP Condition that rules in attested orders. In the next 

section, I turn to the task of ruling out unattested orders, a more complicated matter. 
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A.4 Unattested orders 

The next step is to see if we can rule out unattested orders in the same terms.  Let us 

examine the unattested orders, and suppose that the relevant movements involved in their 

derivations do NOT satisfy the FMC.  That is, for an arbitrary excluded movement, we 

negate the FMC, supposing that (a-1)(s-2) ≤ b+1.  Adding these negative conditions to 

the positive conditions already derived from the attested orders, we will narrow in on 

precisely the universal base DP trees that would be consistent with a tree-balancing 

motivation both for the patterns of movement that we do find, and for the orders that are 

ruled out.  Finding that the solution set is non-empty is intriguing enough, but the real 

test, to repeat, is to see if the structure independently revealed by cartographic studies 

matches up with the predictions here. 

  This is a tricky topic, since there are many routes to each surface order.  This 

analytical problem is particularly acute for the unattested orders, as we must ensure that 

we are not missing “weird” derivations of these orders which do monotonically decrease 

c-command totals (while more obvious derivations do not).  Potentially we would have to 

examine infinitely many derivations of each order, obviously impossible.  In practice, this 

is ruled out by the present account; there cannot be infinite loops of tree-balancing 

movements involving finite material.   

  In what follows, I consider only the most “reasonable” derivations of the unattested 

orders, noting that further investigation is warranted.  However, we may be confident that 

considering further derivations of the unattested orders will not leave us with an empty 

solution set.  There is a basic conceptual reason for this, again revolving around the fact 
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that all the attested orders involve movement of NP or something containing it.  Then any 

unattested order is derived by at least one step of movement not affecting NP or 

something containing it.  In this light, recall the FMC: (a-1)(s-2) > b+1.  Given the 

empirical observation at issue (no non-NP moves), note that n, the size of N, will be a 

term of a, part of the quantity on the greater, left hand side.  On the other hand, for the 

ruled-out movements, N will not move, hence n will be a term of b, on the lesser, right 

hand side of the inequality.  Thus if N is big enough, the non-NP-affecting movements 

that would derive unattested orders will be excluded.  

  As a first, manageable step towards mapping out the possibilities we need to 

consider, lets consider the invisible “kernel” of derivations before the Merge of the D 

portion of the tree – with just three elements in play (the subtrees (N, A, M)), the 

possibilities are much more constrained. 

  To make the tree diagrams more perspicuous, I adopt the convention of shading the 

triangles representing the subtrees D, M, A, N as white, light grey, dark grey, and black, 

respectively.  Thus, each category is tagged with its native depth, deeper (in the base) 

objects appearing darker. For example, N(oun), the bottom of the base structure, is black. 

I use a double arrow to represent (External) Merge, a single arrow to indicate movements. 

  I indicate with letters A and B two things worth noting in this partial derivational 

space. These are discussed in turn below.         
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                        A: *m 
 
 
 
                      B 
Figure 10: Derivational possibilities with N, A, M. 
 
A: We can rule this movement out directly, as it would result in order AMN, unattested. 

Recall the assumption that movement is never forced; if this were a possibility, some 

language would be expected to permit it to survive to the surface under embedding with 

no further movement, yielding the unattested order m *DAMN. 

B. Let’s look at one “exotic” branch, with movement of A following movement of N 

after embedding under M (this is an example of successive cyclic movement, which we 

could ignore when considering only attested orders, as discussed above).  This results in a 

permitted relative order ((D)ANM):  

13)  
 
 
 
 
The relevant condition for this movement is that 
 

14) (a + 1)(t – 1) > n + m + 2 
 
The resulting structure is a rich source of unattested orders. 
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15)            

(a+1)(u-1)≤d+m+n+3*j 
               *h: (n + m)(u – 1) ≤ d + a + 4 
(a-1)u≤d+m+n+5 *j         *e  (m – 1)u ≤ n + d + a + 5 
            
Let’s look more closely at ruling out movement of A and M. Consider the structure  
 
below. 
 

16)  
 
 
 
The light grey (M) category cannot possibly move here. 
 

17)  
 
 
 
 
To see why not, notice that on the previous step, N moved by itself from a minimally 

deep position in the tree.  Along this derivational branch, we can then apply the FMC, 

concluding that the following holds. 

18) n > a + m + 5 
 
The move being ruled out would carry M from the same minimal depth; for this to occur, 

we would have to have this condition met: 

19) *m > n + a + 7 
 
Rearranging terms in the first expression, we have this. 
 

20) m < n – a – 5  
 
But the following holds because the variables are strictly positive. 
 

21) n – a – 5 < n + a + 7 
 
We know m < X, X < Y, and want m > Y: clearly, this is impossible.   
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  In fact, this result is quite general: if one category can undergo movement this 

local, no disjoint object can do the same.  I call this the “LeapFrog” condition, and 

exploit it heavily.  We must be careful to keep in mind that we can only apply this within 

a particular derivational trajectory, in terms of earlier movements along that trajectory.  

Surface orders might be derived in surprisingly convoluted ways, and we must 

“relativize” our conclusions to an individual branch of derivational history.   

  Now let’s look at the same structure considered in (16) above, after D is Merged.    
 
Here again, the resulting structure is a rich source of unattested orders. 
 

22)  
  ?      *u:  (a+m+2)(u–1) ≤ n+d+2 [39] 
         *f:  (m-1)u ≤ n+d+a+5   [40] 
 
       *j:  (a-1)(u+1) ≤ n+d+m+5 [42] 
    *j: (a+1)u ≤ n+d+m+3  
 
In general, it is these “worst-case”, prolific-movement derivations that will produce 

structures yielding the strongest constraints on structure (though at the cost of winnowing 

via the conditions for all the moves to get there).  

  For reasons of space, I do not list the individual movements leading to unattested 

orders, as I did above for attested orders. Instead, I present two figures indicating all of 

the structural sources of unattested orders considered here.  Each black dot connects to a 

node in the tree whose movement is ruled out because it would lead to an unattested 

order.  These are the source of the “negative conditions” in the DP condition (the bulk of 

the expression). In Figure 11, I collect derivations that do not involve movement of N 

past A as soon as it is Merged. Those derivations that do utilize that movement are 

diagrammed in Figure 12. 



 

 

289 

 
 
              
         
 
            
 
                                           
                             x4 namd    
                            
 
              n             x2 namd 
                             nam1 
           t2 nmad                    o1 dnam 
                 an         
 
            nma 
                     anm             w2 anmd 
       c.dnma        man 
                          n danm 
                x1 namd 
                      
            r. mand      k andm       p ndam 
                a dman 
    w1 anmd                 l1 nadm 
 
            t1 nmad         d ndma 
 
 
 
 
 
 
 
 
Figure 11: Excluded routes to unattested orders 1.  
These derivations do not involve immediate inversion of N past A. Movements that 
would lead to unattested orders are indicated with black dots.  Derivations outside the 
considered routes to attested orders (see Figure 9) are indicated with dashed lines. 
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Figure 12: Excluded routes to unattested orders 2. These are derivations that involve 
inversion of N past A before anything else is Merged. Movements that would lead to 
unattested orders are shown with black dots.  Derivations outside the considered routes to 
attested orders are indicated with dashed lines. 
 
A.5 Putting it all together 
 
We are now in a position to assemble these conditions into a larger structure.  The 

reasoning is as follows.  For each attested order, we want to ensure that at least one 
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derivation of that order “succeeds” (i.e., proceeds via a series of movements that each 

reduce the total number of c-command relations present).  For each unattested order, we 

want the opposite condition: no derivation of that order can succeed (every possible 

derivation must involve at least one step of movement that increases the number of c-

command relations present). 

The DP Condition: 

23) ((a+1<(s-2)(n-1)) & (m+a<(s+t+3)(n-1)) & (a+m+d-1<(s+t+u-4)(n-1)) & (m+d< 
(t+u-3)(a+n-2)) & ((a+m+d+1<(s-1)(n-1)) | (m+d<(t+u-3)(n+a))) & (m+1<(t-2) 
(a+n-2)) & ((a+m+2<(s-1)(n-1)) | (m+1<(t-2)(n+a))) & (a+m+d+1<(s+u-2)(n-1)) 
& (d+1<(u-2)(a+n+m-3)) & (d+1<(u-2)(a+n+m-1)) & ((a+m+d-1<(s+t-2)(n-1)) | 
(d+1<u(a-1)+(u-2)(n+m))) & ((m+d+2<(t-1)(a+n-2)) | (d+1<u(n-1)+(u-2)(a+m))) 
& (((m+d+2<(t-1)(a+n-2)) & (a+m+d+3<(s-1)(n-1))) | ((d+1<u(n-1)+(u-2)(a+m)) 
& (a+m+d+3<(s-2)(n-1))) | ((d+1<(u-2)(a+n+m-1)) & (m+d+2<(t-1)(a+n))) | ((a+ 
m+2<(s-1)(n-1) & (d+1<(u-2)(a+n+m+1))) | ((m+1<(t-2)(n+a)) & (d+1<(u-2) 
(a+n+m+1))))) & (2(a+n)+d+2>(u-1)(m-1)) & (a+n+d+4>(u-1)(m-1)) & (a+n+d 
+4>u(m-1)) & (n+m+d+2>(t+u-2)(a-1)) & (n+m+d+4>u(a-1)) & (n+m+3>(t-1) 
(a-1)) & (n+d+3>(u-1)(a+m-2)) & (n+d+3>(u-1)(a+m)) & ¬((d+m>a+n+4) & 
((m+n+a-3)(u-2)>d+1) & ((a+n-2)(t-1)>d+m+2) & ((n-1)(s-1)>d+m+a+3)) & 
¬((((m-1)3>d+a+n+7) | ((a-1)2>d+m+n+7) | ((m+1)2>d+a+n+5) | (a+m+2>n+d 
+4) | ((n-1>d+m+a+7) & (((a+m+2)2>d+n+6) | ((m+1)3>d+a+n+7) | ((m-1)4> 
d+a+n+9)))) & ((d+1)2>n+a+m+5) & ((m+n+a-3)(u-2)>d+1) & ((a+n-2)(t-1)> 
d+m+2) & ((n-1)(s-1)>d+m+a+3)) & ¬(((n-1)(s-1)>a+m+2) & ((n+a-2)(u-2)> 
m+1) & (((a+m)(u-1)>d+n+2) | ((m-1)u>d+a+n+3) | ((a-1)u>d+m+n+3) | (((n-1) 
(u-1)>d+m+a+3) & (((a+m+2)(u-1)>d+n+2) | ((a+m)u>d+n+4) | ((m-1)(u+1)> 
d+a+n+5))))) & ¬((a+m>d+n+4) & ((n-1)s>d+m+a+3) & ((n+a+m-1)(u-2)>d+1) 
& ((n+a-2)(u-2)>m+1)) & ¬(((n+a-2)(u-2)>m+1) & (((m-1)(u-1)>d+a+n+1) | 
(((n-1)(s+u-2)>d+a+m+1) & (((a+m)(u-1)>d+n+2) | ((m-1)u>d+a+n+3))))) & 
¬(((d+m>n+a+4) & ((n-1)(s-1)>d+m+a+3) & ((a+n-2)(u-1)>d+m+2) & ((n+a-2) 
(u-2)>m+1)) & ((a+1>d+m+n+5) | ((a-1)2 >d+m+n+7) | ((m+1)(u-1)>d+a+n+5) | 
((m-1)u>d+a+n+7))) & ¬(((n-1)(s+t-3)>a+m) & (((a+m-2)(u-1)>d+n+2) | ((a-1) 
(t+u-2)>d+m+n+1))) & ¬((((n-1)(t-1)>a+m+2) & ((n-1)(s-2)>a+1)) & (((a+m)(u-
1)>d+n+2) | ((a+1)(t+u-2)>d+m+n+1) | ((a-1)(t-1)>m+n+2))) & ¬(((a-1)(t-1)> 
m+n+2) & ((n-1)(s-2)>a+1)) & ¬(((n-1)(s-2)>a+1) & (((a-1)(t+u-2)>d+m+n+1) | 
((a-1)t>d+m+n+3))) & ¬(((n-1)(s-2)>a+1) & ((n+a)(t-2)>m+1) & (((m-1)(u-1)> 
d+a+n+3) | ((a-1)u>d+m+n+3) | (((n-1)u>d+m+a+3) & (((a+m+2)(u-1)>d+n+2) | 
((m-1)u>d+a+n+5) | ((a+1)u>d+m+n+3) | ((a-1)(u+1)>d+m+n+5))))) & ¬(((m-1) 
(u-1)>d+a+n+5) & (d+m-2>n+a-4) & ((n-1)(s-1)>d+m+a+1) & ((a+n)(t+u-3)> 
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d+m)) & ¬((n-1>a+m-4) & ((n+a)(t-2)>m+1) & ((n-1)(s-2)>a+1) & (((a+m-2)(u-
1)>d+n+2) | ((m-1)u>d+n+a+5) | ((a+1)u>d+m+n+3) | ((a-1)(u+1)>d+m+n+5) | 
((n-1>d+m+a+7) & ((n+a+m+3)(u-2)>d+1) & ((a+m+2)2>d+n+6)) | (((n-1)(u-1)> 
d+m+a+5) & (((a+m+4)(u-1)>d+n+2) | ((a+m)u>d+n+4) | ((m-1)(u+1)>d+m+n+7 
))))) & ¬((a+m+2>d+n+4) & ((n-1)2>d+m+a+5) & ((n+a+m+1)(u-2)> d+1) & 
((n+a)(t-2)>m+1) & ((n-1)(s-2)>a+1) ) & ¬(((a+n-2)(t-2)>m+1) & ((n-1)(s-1)> 
m+3) & ((n-1)(u-1)>d+m+a+3) & (((a+m+2)(u-1)>n+d+2) | ((a+m)u>n+d+4))) & 
¬(((a+1)(t-1) > n+m+2) & ((n-1)(t-1)>m+a+2) & ((n-1)(s-2)>a+1) & (((a+1)(u-
1)>d+m+n+3) | ((a-1)u>d+m+n+5) | ((n+m)(u-1)>d+a+4) | ((m-1)u>d+a+n+5)))) 

 
In the next portion of this appendix, I give the numerical results of the program built to 

explore solutions to the DP condition. The program itself is given explicitly after that, in 

the final section of this appendix. 

 
 
A.6 Table of results and selected solutions 
 
The table below includes the results of running the program given in Appendix A-3, with 

the listed choices for the structural parameters (n, a, m, d, s, t, u).  Following the table, I 

include a brief list of selected sample solutions (these sample solutions were obtained by 

using the option in the program to print a list of solutions, within the user-specified 

parameters). The column headings are as follows: 

NCap (max n): This is the maximum number of nodes allowed in NP for that iteration of the program;  the 
program considers NPs of that size, and all smaller sizes. 

 
AdjCap (max a):  The maximum number of nodes that region A of the tree may contain.   
 
AdjDep (max s): The maximum allowed spinal depth of the A region (s). 
 
NumCap, DemCap: The maximum node counts to be considered in regions M and D, respectively. 
 
NumDep, DemDep: The user-entered upper limits on the spinal depth of M and D. 
 
Total: This represents the number of distinct choices of variable values that the program  has considered. 
 
Solutions: This is the number of distinct choices of variable values for which the DP  condition, describing 

the shapes of base DP tree for which the  all attested orders and  no unattested orders are derived 
by strictly tree-balancing movements. 
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Rows in grey represent choices of tree parameters with no solutions to the DP Condition. 

NCap 
(max n) 

AdjCap 
(max a) 

AdjDep 
(max s) 

NumCap 
(max m) 

NumDep 
(max t) 

DemCap 
(max d) 

DemDep 
(max u) 

Total Solutions 

21 11 5 11 5 13 5 38808 42 
21 11 5 13 5 11 5 38808 17 
21 13 5 11 5 11 5 38808 17 
21 11 5 11 5 11 5 30184 17 
19 11 5 11 5 11 5 27440 9 
17 11 5 11 5 11 5 24696 6 
15 11 5 11 5 11 5 21952 4 
13 11 5 11 5 11 5 19208 3 
11 11 5 11 5 11 5 16464 2 
9 11 5 11 5 11 5 13720 1 
9 11 5 11 5 15 5 21560 6 
9 13 5 13 5 15 5 35640 6 
9 15 5 15 5 15 5 53240 6 
7 11 5 11 5 11 5 10976 0 
7 21 9 21 9 21 9 562432 0 
9 9 5 11 5 11 5 9800 1 
9 11 5 9 5 11 5 9800 1 
9 9 5 9 5 11 5 7000 1 

11 5 3 5 3 7 4 324 0 
11 5 3 5 3 9 5 540 0 
9 5 3 5 3 5 3 135 0 

13 5 3 5 3 5 3 189 0 
15 5 3 5 3 5 3 216 0 
13 5 3 5 3 7 4 378 0 
13 5 3 5 3 9 5 630 0 
15 7 4 5 3 5 3 432 0 
15 5 3 7 4 5 3 432 0 
15 5 3 5 3 7 4 432 0 
15 5 3 5 3 9 4 648 0 
15 5 3 5 3 11 5 1008 4 
17 5 3 5 3 5 3 243 0 
17 5 3 5 3 7 4 486 0 
17 5 3 5 3 9 5 810 1 
17 5 3 5 3 11 6 1215 6 
17 5 3 5 3 11 3 729 6 
17 7 4 7 4 11 3 2916 6 
35 5 3 5 3 5 3 486 8 
35 5 3 5 3 7 4 972 19 
35 5 3 7 4 5 3 972 18 
35 7 4 5 3 5 3 972 18 
35 5 3 7 4 7 4 1944 41 
35 7 4 5 3 7 4 1944 41 
35 7 4 7 4 5 3 1944 36 

Table 8: Results of program. 
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I list below some sample solutions. 
 
These were obtained by running the program given below, with these maximum values of  
<n, a/s, m/t, d/u>:  <31, 11/6, 11/6, 11/6>. 
Spines are in bold underline; solutions with u > 3 are in bold italics. 
 
n = 9, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 11, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 13, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 15, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 17, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 17, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 19, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 19, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 19, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 21, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 21, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 21, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 21, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 21, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 21, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 21, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 21, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 23, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 23, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 23, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 23, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 23, a = 5, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 23, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 23, a = 5, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 23, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 23, a = 7, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 23, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 23, a = 7, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 23, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 25, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 25, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 25, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 25, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 3, d = 7, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 4, d = 7, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 25, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 25, a = 7, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 25, a = 7, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 25, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 25, a = 7, s = 4, m = 5, t = 3, d = 7, u = 3 
n = 25, a = 7, s = 4, m = 5, t = 3, d = 9, u = 3 

n = 25, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 27, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 27, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 27, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 3, d = 5, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 3, d = 7, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 9, t = 3, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 4, d = 7, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 27, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 9, t = 4, d = 11, u = 3 
n = 27, a = 5, s = 3, m = 9, t = 5, d = 11, u = 3 
n = 27, a = 7, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 27, a = 7, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 27, a = 7, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 27, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 7, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 27, a = 7, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 27, a = 9, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
n = 27, a = 7, s = 4, m = 5, t = 3, d = 7, u = 3 
n = 27, a = 7, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 27, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 7, s = 4, m = 7, t = 3, d = 11, u = 3 
n = 27, a = 7, s = 4, m = 7, t = 4, d = 11, u = 3 
n = 27, a = 9, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 27, a = 9, s = 5, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3  
n = 29, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 29, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 5, t = 3, d = 11, u = 4 
n = 29, a = 5, s = 3, m = 7, t = 3, d = 5, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 3, d = 7, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 3, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 3, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 4, d = 7, u = 3 



 

 

295 

n = 29, a = 5, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 4, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 4, d = 11, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 5, d = 9, u = 3 
n = 29, a = 5, s = 3, m = 9, t = 5, d = 11, u = 3 
n = 29, a = 7, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 29, a = 7, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 29, a = 7, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 7, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 29, a = 7, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 29, a = 7, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 29, a = 7, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 29, a = 9, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 9, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
n = 29, a = 7, s = 4, m = 5, t = 3, d = 7, u = 3 
n = 29, a = 7, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 7, s = 4, m = 7, t = 3, d = 9, u = 3 
n = 29, a = 7, s = 4, m = 7, t = 3, d = 11, u = 3 
n = 29, a = 7, s = 4, m = 7, t = 4, d = 9, u = 3 
n = 29, a = 7, s = 4, m = 7, t = 4, d = 11, u = 3 
n = 29, a = 9, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 9, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 29, a = 9, s = 5, m = 5, t = 3, d = 9, u = 3 
n = 29, a = 9, s = 5, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 9, u = 4 
n = 31, a = 5, s = 3, m = 5, t = 3, d = 11, u = 4 
n = 31, a = 5, s = 3, m = 7, t = 3, d = 5, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 3, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 3, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 3, d = 9, u = 3 

n = 31, a = 5, s = 3, m = 9, t = 3, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 4, d = 5, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 4, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 31, a = 5, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 4, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 4, d = 9, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 4, d = 11, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 5, d = 7, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 5, d = 9, u = 3 
n = 31, a = 5, s = 3, m = 9, t = 5, d = 11, u = 3 
n = 31, a = 7, s = 3, m = 5, t = 3, d = 5, u = 3 
n = 31, a = 7, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 7, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 7, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 3, d = 7, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 3, d = 9, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 3, d = 11, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 4, d = 7, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 4, d = 9, u = 3 
n = 31, a = 7, s = 3, m = 7, t = 4, d = 11, u = 3 
n = 31, a = 9, s = 3, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 9, s = 3, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 9, s = 3, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 7, s = 4, m = 5, t = 3, d = 5, u = 3 
n = 31, a = 7, s = 4, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 7, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 7, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 3, d = 7, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 3, d = 9, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 3, d = 11, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 4, d = 7, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 4, d = 9, u = 3 
n = 31, a = 7, s = 4, m = 7, t = 4, d = 11, u = 3 
n = 31, a = 9, s = 4, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 9, s = 4, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 9, s = 4, m = 5, t = 3, d = 11, u = 3 
n = 31, a = 9, s = 5, m = 5, t = 3, d = 7, u = 3 
n = 31, a = 9, s = 5, m = 5, t = 3, d = 9, u = 3 
n = 31, a = 9, s = 5, m = 5, t = 3, d = 11, u = 3 

  
 
A.7 Java program. 
 
What follows is the code for the Java program used to produce the results reported 

throughout this chapter.  Readers are invited to use (and modify) this code freely to 

further explore the properties of the solution space. 
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import java.io.*; 
public class DPcondition { 
    /* 
This class is designed to explore the solution space in which the movements underlying 
DP orders can be explained as reducing c-command totals. 
*/ 
    public static void main(String[] args) throws IOException { 
 
int NumberOfPossibilities = 0; 
int NumberOfSolutions = 0; 
boolean PrintSol; 
         
System.out.println("Enter a maximum size for NPs:"); 
BufferedReader bufferedreader = new BufferedReader(new 
InputStreamReader(System.in)); 
String number1 = bufferedreader.readLine(); 
int NounCap = Integer.parseInt(number1); 
 
System.out.println("Enter a maximum size for AdjPs:"); 
String number2 = bufferedreader.readLine(); 
int AdjCap = Integer.parseInt(number2); 
 
System.out.println("Enter a maximum depth for AdjPs:"); 
String number3 = bufferedreader.readLine(); 
int AdjDep = Integer.parseInt(number3); 
 
System.out.println("Enter a maximum size for NumPs:"); 
String number4 = bufferedreader.readLine(); 
int NumCap = Integer.parseInt(number4); 
 
System.out.println("Enter a maximum depth for NumPs:"); 
String number5 = bufferedreader.readLine(); 
int NumDep = Integer.parseInt(number5); 
 
System.out.println("Enter a maximum size for DemPs:"); 
String number6 = bufferedreader.readLine(); 
int DemCap = Integer.parseInt(number6); 
 
System.out.println("Enter a maximum depth for DemPs:"); 
String number7 = bufferedreader.readLine(); 
int DemDep = Integer.parseInt(number7); 
 
System.out.println("Print list of viable solutions (y), or not (n)? BEWARE, only do this 
after verifying solution set is small! "); 
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String PrintSolChoice = bufferedreader.readLine(); 
if (PrintSolChoice.charAt(0)=='y') 
{ 
PrintSol = true; 
} 
else PrintSol = false; 
 
for (int n = 1; n < NounCap + 1; n = n + 2) 
  { 
  for (int s = 2; s < AdjDep + 1; s++) 
    { 
     for (int a = 2 * s - 1; a < AdjCap + 1; a = a + 2) 
       { 
         for (int t = 2; t < NumDep + 1; t++) 
         { 
             for (int m = 2 * t - 1; m < NumCap + 1; m = m + 2) 
             { 
                for (int u = 2; u < DemDep + 1; u++) 
                 { 
                    for (int d = 2 * u - 1; d < DemCap + 1; d = d + 2) 
                     { 
                         NumberOfPossibilities++; 
                        if ((a+1 < (s-2)*(n-1)) && (m+a < (s+t+3)*(n-1)) && (a+m+d-1 < (s+t+u-
4)*(n-1)) && (m+d < (t+u-3)*(a+n-2)) && ((a+m+d+1 < (s-1)*(n-1)) || (m+d < (t+u-
3)*(n+a))) && (m+1 < (t-2)*(a+n-2)) && ((a+m+2 < (s-1)*(n-1)) || (m+1 < (t-2)*(n+a))) 
&& (a+m+d+1 < (s+u-2)*(n-1)) && (d+1 < (u-2)*(a+n+m-3)) && (d+1 < (u-
2)*(a+n+m-1)) && ((a+m+d-1 < (s+t-2)*(n-1)) || (d+1 < u*(a-1) + (u-2)*(n+m))) && 
((m+d+2 < (t-1)*(a+n-2)) || (d+1 < u*(n-1) + (u-2)*(a+m))) && (((m+d+2 < (t-1)*(a+n-
2)) && (a+m+d+3 < (s-1)*(n-1))) || ((d+1 < u*(n-1) + (u-2)*(a+m)) && (a+m+d+3 < (s-
2)*(n-1))) || ((d+1 < (u-2)*(a+n+m-1)) && (m+d+2 < (t-1)*(a+n))) || ((a+m+2 < (s-1)*(n-
1) && (d+1 < (u-2)*(a+n+m+1))) || ((m+1 < (t-2)*(n+a)) && (d+1 < (u-
2)*(a+n+m+1))))) && (2*(a+n)+d+2 > (u-1)*(m-1)) && (a+n+d+4 >(u-1)*(m-1)) && 
(a+n+d+4 > u*(m-1)) && (n+m+d+2 > (t+u-2)*(a-1)) && (n+m+d+4 > u*(a-1)) 
&&(n+m+3 > (t-1)*(a-1)) &&(n+d+3 > (u-1)*(a+m-2)) && (n+d+3 > (u-1)*(a+m)) && 
!((d+m > a+n+4) && ((m+n+a-3)*(u-2)>d+1)&&((a+n-2)*(t-1)>d+m+2)&&((n-1)*(s-
1)>d+m+a+3))  && !(( ((m-1)*3 > d+a+n+7 ) || ((a-1)*2 > d+m+n+7) || ((m+1)*2 > 
d+a+n+5 ) || (a+m+2 > n+d+4) || ( (n-1 > d+m+a+7) && (((a+m+2)*2>d+n+6) 
||((m+1)*3>d+a+n+7)||((m-1)*4>d+a+n+9) ) ) ) &&((d+1)*2> n+a+m+5) &&((m+n+a-
3)*(u-2)>d+1)&&((a+n-2)*(t-1)>d+m+2)&&((n-1)*(s-1)>d+m+a+3) ) && ! ( ((n-1)*(s-
1)> a+m+2)&&((n+a-2)*(u-2)>m+1) &&( ((a+m)*(u-1)>d+n+2) || ((m-1)*u>d+a+n+3) || 
((a-1)*u>d+m+n+3) || ( ((n-1)*(u-1)>d+m+a+3) && (((a+m+2)*(u-
1)>d+n+2)||((a+m)*u>d+n+4)||((m-1)*(u+1)>d+a+n+5))) ) ) &&! ((a+m > 
d+n+4)&&((n-1)*s>d+m+a+3)&&((n+a+m-1)*(u-2)>d+1)&&((n+a-2)*(u-2)>m+1) ) 
&&!( ((n+a-2)*(u-2)>m+1) && ( ((m-1)*(u-1)>d+a+n+1) || ( ((n-1)*(s+u-2)>d+a+m+1) 
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&& ( ((a+m)*(u-1)>d+n+2) || ((m-1)*u>d+a+n+3) ) ) ) ) && ! (  ((d+m > n+a+4)&&((n-
1)*(s-1) >d+m+a+3)&&((a+n-2)*(u-1)>d+m+2) &&((n+a-2)*(u-2)>m+1)) && ( 
(a+1>d+m+n+5) || ((a-1)*2 >d+m+n+7) || ((m+1)*(u-1)>d+a+n+5) || ((m-1)*u>d+a+n+7)  
) ) && ! ( ((n-1)*(s+t-3)>a+m)&&( ((a+m-2)*(u-1)>d+n+2)||((a-1)*(t+u-2)>d+m+n+1))) 
&&! ( (((n-1)*(t-1)>a+m+2)&&((n-1)*(s-2)>a+1)) && ( ((a+m)*(u-1)>d+n+2) || 
((a+1)*(t+u-2)>d+m+n+1) || ((a-1)*(t-1)>m+n+2) ) ) &&! ( ((a-1)*(t-1) > m+n+2) && 
((n-1)*(s-2)>a+1) ) &&!(((n-1)*(s-2)>a+1) && (((a-1)*(t+u-2)>d+m+n+1) || ((a-
1)*t>d+m+n+3) ) ) && ! (  ((n-1)*(s-2)>a+1) && ((n+a)*(t-2)>m+1) && ( ((m-1)*(u-
1)>d+a+n+3) || ((a-1)*u>d+m+n+3) || (((n-1)*u>d+m+a+3) && ( ((a+m+2)*(u-
1)>d+n+2) || ((m-1)*u>d+a+n+5) || ((a+1)*u>d+m+n+3) || ((a-1)*(u+1)>d+m+n+5) ) ) )  
) && ! ( ((m-1)*(u-1)>d+a+n+5) && (d+m-2>n+a-4) && ((n-1)*(s-1)>d+m+a+1) && 
((a+n)*(t+u-3)>d+m) ) && ! ( (n-1>a+m-4) && ((n+a)*(t-2)>m+1) && ((n-1)*(s-
2)>a+1) && ( ((a+m-2)*(u-1)>d+n+2) || ((m-1)*u>d+n+a+5) || ((a+1)*u>d+m+n+3) || 
((a-1)*(u+1)> d+m+n+5) || ( (n-1>d+m+a+7)&&((n+a+m+3)*(u-2)>d+1) && 
((a+m+2)*2 >d+n+6)) || ( ((n-1)*(u-1)>d+m+a+5)&&(((a+m+4)*(u-1)>d+n+2)|| 
((a+m)*u>d+n+4) ||((m-1)*(u+1)> d+m+n+7))))) && ! ((a+m+2>d+n+4) && ((n-
1)*2>d+m+a+5) && ((n+a+m+1)*(u-2)>d+1) && ((n+a)*(t-2)>m+1) && ((n-1)*(s-
2)>a+1) ) &&! (  ((a+n-2)*(t-2)>m+1) && ((n-1)*(s-1)>m+3) && ((n-1)*(u-
1)>d+m+a+3) && ( ((a+m+2)*(u-1)>n+d+2) || ((a+m)*u>n+d+4)) ) &&! (((a+1)*(t-1) > 
n+m+2) && ((n-1)*(t-1)>m+a+2) && ((n-1)*(s-2)>a+1) && ( ((a+1)*(u-1)> d+m+n+3) 
|| ((a-1)*u>d+m+n+5) || ((n+m)*(u-1)>d+a+4) || ((m-1)*u>d+a+n+5)))) 
                        { 
                            NumberOfSolutions++; 
                            if (PrintSol == true) 
                            { 
                            System.out.println("n = "+n+ ", a = "+a+", s = "+s+", m = "+m+", t = 
"+t+", d = "+d+", u = "+u); 
                            } 
                        } 
                     } 
                  } 
               } 
           } 
        } 
     } 
  } 
System.out.print("The total number of possibilities checked is: "); 
System.out.println(NumberOfPossibilities); 
System.out.print("The total number of solutions in this set is: "); 
System.out.println(NumberOfSolutions); 
 } 
} 
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