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Part	I	

•  Background	
– 3rd	factor	in	biology	
– Golden	mathemaWcs	
– The	Rabbit	sequence	
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•  The	study	of	complex	systems	seems	to	affirm	the	Thompson-
Turing	claim	that	“some	physical	processes	are	of	very	general	
occurrence.”		

•  Notably,	those	involving	Fibonacci-based	“golden”	forms,	
ubiquitous	in	nature.			

•  This	lends	immediate	interest	to	the	observaWon	that	the	repeated	
structural	moWf	in	the	human	syntacWc	system,	the	X-bar	schema,	is	
likewise	a	“golden”	form	(Medeiros	2008),		

•  and	leads	us	to	inquire	whether	whatever	is	behind	the	natural	
ubiquity	of	such	phenomena,	in	other	domains,	might	possibly	be	
at	work	here	as	well.			

•  If	so,	this	peculiar	aspect	of	human	phrase	structure	would	fall	
under	Chomsky’s	(2005)	“third	factor”,	a	fact	about	language	which	
is	neither	encoded	in	the	parWculars	of	our	genome,	nor	learned	
from	the	environment,	but	determined	by	domain-general	
principles	beyond	the	organism.		
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“Golden”	MathemaWcs	
•  The	Golden	number	(aka	the	golden	raWo,	the	golden	
secWon,	the	golden	mean)	

•  	is	x,	such	that	x2	–	x	–	1	=	0 			x/(x+1)	=	1/x	

•  1.6180339…	a	constant	called	Phi. 	 	 	 		
•  (or	someWmes	its	reciprocal,	0.618…	phi)	
•  The	Golden	angle,	associated	with	the	dominant	
spiral	mode	of	phyllotaxis,	is	just	phi	measured	out	
on	a	circle.	

•  Phi	is	the	most	irra-onal	number.	
•  InWmately	linked	with	the	Fibonacci	sequence	and	
the	Golden	String	(~Fibonacci	word).	
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The	“golden	rule”	

•  an+2	=	an+1+	an+0	 	Fib	#s,	addiWon	
•  sn+2	=	sn+1	+	sn+0			Golden	String,	 	 	 	 	 	
	concatenaWon	

•  x2	=	x1	+	x0 		 	Polynomial	giving	Phi	

•  xn+2	=	xn+1	+		xn+0 	(Wmes	xn)	

•  SOn+2	=	SOn+1	+	SOn+0			Golden	syntacWc		 	 				
recurrence	in	X-bar	format	
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Fib	#:	an	=	an-1+	an-2	 	1,1,2,3,5,8,13…	
Fib	word:		sn	=	sn-1	sn-2	1011010110110…	

•  The	Fibonacci	numbers,	and	the	closely	linked	Fibonacci	word	
(aka	Golden	String)	in	parWcular,	are	important	topics	in	the	
study	of	symbolic	dynamics,	physics,	theoreWcal	computer	
science,	etc.	

•  These	paUerns	have	a	number	of	‘special’	mathemaWcal	
properWes.	

Fib	#’s,	addiWon: 	 	Fib	words,	concatenaWon:	
1,1,2,3,5,8,13,… 	 	(0),1,10,101,	10110,	10110101,	
•  1+1=2 	 	 	0,	1:	10	
•  1+2=3 	 	 	1,	10:	101	
•  2+3=5 	 	 	101,	10:	10110	
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Fibonacci	L-grammar	

•  101101011011010110101101101011011010110
101101101011010110110101...	

•  hUp://personal.maths.surrey.ac.uk/ext/R.KnoU/
Fibonacci/fibrab.qt	
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The	Golden	String/Fibonacci	Word/
Rabbit	Sequence	

•  This	structure	is	a	quasiperiodic	binary	sequence	
whose	long-range	order	reflects	the	mathemaWcs	of	
the	Fibonacci	numbers.		

•  By	“quasiperiodic”,	we	mean	that	it	never	exactly	
repeats	(such	sequences	are	merely	periodic),	but	
neither	is	it	random.	In	fact	it	is	self-similar.		

•  Its	linear	organizaWon	reflects	hierarchical	groupings	of	
the	kind	indicated	in	the	tree	above.	

•  This	structure	is	reflected	in	many	places	in	nature,	
from	the	organizaWon	of	spin	glasses	(Binder	2008),	to	
the	oscillaWons	of	mulWperiod	variable	stars	including	
UW	Herculis	(Escudero	2003).		
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Self-generaWng	procedure	for	the	Golden	String	
	{examine	the	value	at	a	pointer.	 		

	 	If	val=1,	append	10	to	the	end	of	the	string.	

	 	If	val=0,	append	1	to	the	end	of	the	string.	

	{					Move	the	pointer	one	space	right.	
	Repeat.		

–  Begin	with	just	the	first	two	digits	of	the	GS	(10),	with	pointer	on	the	
second	digit	(0,	underlined	and	bolded):	

1	0	
–  The	pointer	is	at	0,	so	we	add	1	to	the	end	and	move	the	pointer.	

1	0	1	
–  Now	the	pointer	is	on	1;	we	add	10	and	move	the	pointer.	

1	0	1	1	0	
–  And	so	on:	

1011010,	10110101,	1011010110,	10110101101,	
1011010110110,	etc.	3/10/2013	 10	



The	Golden	string	encodes	its	own	computaWon	

•  The	Golden	String	has	a	fascinaWng	property	of	‘verWcal’	self-
similarity	at	many	scales.	

•  The	sequence	encodes	the	very	procedure	used	to	compute	
the	sequence…	

•  Idea:	perhaps	this	is	significant	in	light	of	the	double	
ar4cula4on	of	language	noted	since	anWquity:	its	dual	life	as	a	
linear	outer	form	and	a	hierarchically	structured	inner	form	
(strings	and	trees,	basically).	

•  This	object,	in	a	sense,	brings	its	own	double	ar-cula-on	with	
it;	the	projecWon	of	a	syntacWc	form	from	its	sequence	is	
inherently	already	there.	

•  In	other	word:	there’s	already	a	tree	in	this	string.	
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Part	II	

•  Fibonacci/golden	properWes	in	Nature	
– Phyllotaxis	
– Brain	
– Penrose	Quasicrystals	
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Intriguing	cases	of	“golden”	structure:		

•  The	deep	robustness	of	Fibonacci-based	organizaWon	in	
phyllotaxis	(across	>	90%	of	plant	species,	Jean	1994)	

•  This	paUern	is	known	to	“arise	from	self-organizaWon	in	an	
iteraWve	process	[…]	the	ordering	is	explained	as	due	to	the	
system’s	trend	to	avoid	raWonal	(periodic)	organizaWon,	thus	
leading	to	a	convergence	towards	the	golden	mean.”	Douady	
&	Couder	1992	

•  Asymmetry	in	mammalian	bronchial	structure	"consistent	
with	a	process	of	morphogeneWc	self-similarity	described	by	
Fibonacci	scaling"	(Goldberger,	West,	Dresselhaus,	Bhargava	
1985)	
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1,	1,	2,	3,	5,	8,	13,	21,	34…	
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•  As	Douady	and	Couder	(1992,	1996)	showed,	the	familiar	Fib-
spiraling	arrangements	in	phyllotaxis	can	be	explained	by	purely	
physical	self-organizaWon	at	the	shoot	apical	meristem.	

•  They	reproduced	idenWcal	paUerns	with	mutually	repelling	droplets	
of	ferro-fluid;	in	essence,	if	the	droplets	fall	into	the	center	of	the	
dish	fast	enough	to	be	repelled	by	more	than	one	previous	drop,	
the	Fibonacci	organizaWon	is	virtually	inevitable.	

•  Computer	simulaWons	reveal	the	same	paUern	emerges	robustly	
even	if	the	repulsion	forces	scale	differently	with	distance	(i.e.,	
under	different	laws	of	physics).	

•  		
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Golden	frequency	raWos	in	the	brain	

•  Evidence	that	golden	mathemaWcs	plays	a	special	role	on	the	
“hardware”	side	of	cogniWon:	

Roopun	et	al.	(2008),	“Temporal	interac-ons	between	cor-cal	rhythms”:	

•  “The	modal	peak	frequencies	fall	into	disWnct	bands,	with	
approximately	twice	as	many	bands	as	expected	from	a	
natural	log	distribuWon.		Instead,	the	bands	appear	
approximately	distributed	according	to	‘phi’	(the	‘golden	
mean’)	rather	than	‘e’	–	a	constant	commonly	associated	with	
the	organisaWon	of	complex	natural	systems	(Atela	et	al.,	
2002).”	

•  “[…]	in	using	phi	as	a	common	raWo	between	adjacent	
frequencies	in	the	EEG	spectrum	(Figure	1),	the	neocortex	
appears	to	have	found	a	way	to	pack	as	many,	minimally	
interfering	frequency	bands	as	possible	into	the	available	
frequency	space.”	
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Golden	quasicrystals	

•  A	class	of	crystals	with	Bragg	diffracWon	showing	forbidden	(e.g.	five-fold)	
symmetry	has	been	successfully	modeled	in	terms	of	3-dimensional	
Penrose	Wlings.	Although	Penrose	constructed	his	Wlings	with	two	or	more	
shapes	with	intricate	edge-matching	rules,	it	has	been	shown	that	the	
same	geometry	can	be	achieved	through	uniform,	overlapping	decagonal	
Wles.	

•  “[A]	quasiperiodic	Wling	can	be	forced	using	only	a	single	type	of	Wle,	and	
furthermore	we	show	that	matching	rules	can	be	discarded.		Instead,	
maximizing	the	density	of	a	chosen	cluster	of	Wles	suffices	to	produce	a	
quasiperiodic	Wling.		If	one	imagines	the	Wle	cluster	to	represent	some	
energeWcally	preferred	atomic	cluster,	then	minimizing	the	free	energy	
would	naturally	maximize	the	cluster	density.”	(Steinhardt	&	Jeong	1996:	
431)	
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“A	new	picture	of	quasicrystals	emerges	in	which	the	structure	is	determined	enWrely	by	a	single	
repeaWng	cluster	which	overlaps	(shares	atoms	with)	neighbor	clusters	according	to	simple	

energeWcs.”		Gummelt(1996).	

“Figure	3:	SuperposiWon	of	a	perfect	decagon	Wling	on	the	high	angle	annular	dark-field	(HAADF)	
la|ce	image	of	water-quenched	Al72Ni20Co8	obtained	by	the	high	angle	annular	dark	field	
method	by	Saitoh	et	al.”	
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•  Above	le}:	Penrose	Wling	with	rhombi	

•  Below	le}:	Ammann	bars:	wide/narrow	
gaps	follow	the	Golden	String		

•  Above	right:	Penrose	Wling	with	a	single	
kind	of	(overlapping)	decagon,	best	model	
for	real	quasicrystals.	
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Part	III	

•  What	are	grammars?	
•  Saddy’s	results	
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“Where	do	grammars	come	from?”	

•  This	was	the	quesWon	posed	in	Doug	Saddy’s	
talk	here	in	Spring	2012.	

•  He	presented	intriguing	experimental	results	
suggesWng	that	the	so-called	Fibonacci	L-
grammar	“entrains	the	brain”	in	a	special	way,	
more	so	than	any	other	kind	of	long-range	
order	he	examined.		
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Saddy’s	results	

•  In	experiments	by	J	Douglas	Saddy	and	his	group	at	the	
Centre	for	IntegraWve	Neuroscience	and	Neurodynamics,		

•  He	played	subjects	a	long	stretch	of	this	Fibonacci	grammar	
sequence,	as	a	string	of	ba/bi	syllables:	
–  ba	bi	ba	ba	bi	ba	bi	ba	ba	bi	ba	ba	bi...	

•  As	well	as	other	sequences,	like	the	Thue	Morse	(1	!	01;	0	
!	10)	and	Feigenbaum	(1!	10,	0	!	11)	grammars	

•  Then	had	subjects	decide	which	of	two	short	samples	
played	subsequently	best	matched	what	they	had	heard	
before.	

•  Subjects	recognized	the	Fibonacci	sequence	more	
accurately	than	any	other.	
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More	than	just	a	sequence...	

•  He	also	tested	the	Fibonacci	and	other	
grammars	against	“pseudo-clones”,	

•  Composed	of	“legal”	substrings,	assembled	
legally,	but	with	a	randomized	long-range	
order.	

•  Again	Fibonacci	fared	best;	remarkably,	
subjects	could	tell	it	apart	from	even	
sequences	built	from	5-	or	8-bit	long	
substrings	of	it	(10110	&	10110101).	
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Remarkable	

•  This	is	a	remarkable	fact;	the	long-range	order	of	
the	sequence	is	strictly	beyond	the	capabiliWes	of	
finite-state	(Markovian)	processes	to	describe.	

•  Even	more	stunning:	in	computer	science,	the	
Fibonacci	word	is	known	to	be	the	worst	case	for	
the	applicaWon	of	many	efficient	paUern	
recogniWon	algorithms	(Knuth,	Morris,	&	PraU	
1977,	Aho	1990,	a.o.).	

•  Whatever	the	reason	for	subjects	recognizing	this	
string	best,	it	seems	it’s	not	about	local	staWsWcal	
regulariWes	(e.g.,	recognizing	n-grams).	
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Saddy’s	conclusions	
•Safe	conclusion:		Humans	can	detect	and	discriminate	domains	of	

self-embedding	in	recursive	strings.		
•Prudent	conclusion:	InvesWgaWng	the	correspondence	between	

corWcal	acWvity	and	the	ability	to	recognise	and	manipulate	
structure	hidden	in	recursive	signals	may	point	to	common	
mechanisms	underlying	complex	cogniWve	processes.		

•Bold	conclusion:	The	physical	condiWons	which	yield	the	L-system	
governed	paUerns	in	sunflowers	and	brain	morphology	appear	to	
also	govern	aspects	of	opWmal	neural	signal	properWes	involved	in	
informaWon	processing.	

•Binky‘s	conclusion:		Some	of	the	defining	properWes	of	human	
grammars	follow	from	physical	principles	governing	certain	
aUributes	of	a	system	–	they	reflect	a	natural	law.		 	 	 		
	(Saddy	2012:	58)	
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Where	to	go	from	here?	

•  To	test	the	hypothesis	that	the	spectral	
properWes	of	the	Fibonacci/X-bar	grammar	are	
what	make	it	“special”	

•  The	idea	is	to	test	how	subjects	perform	with	
disWnct	sequences/grammars	with	some	but	
not	all	of	its	special	spectral	properWes.	

•  This	requires	a	jump	to	ternary	strings	(over	
an	alphabet	0,	1,	2),	the	first	place	where	
these	properWes	can	be	dissociated.	
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Tribonacci	
This	grammar	is	Endocentric	and	of	Pisot	type,	but	not	Polygonal.	
	 	 	2	!	2	1	
	 	 	1	!	2	0	
	 	 	0	!	2	

212021221202121202122120212021221202121202122120212212
021212021221202120212212021212021221202121202122120212
021221202121202122120212212021212021221202120212212021
212021221202120212212021212021221202122120212120212212
021202122120212120212212021212021221202120212212021212
021221202122120212120212212021202122120212120212212021
221202121202122120212021221202121202122120212120212212
021202122120...	
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Heptagon	
This	grammar	is	Polygonal,	but	neither	Endocentric	nor	Pisot.	
	 	 	2	!	2	1	
	 	 	1	!	0	2	
	 	 	0	!	1	

210212102210212121021210221022102121022102121210212121
021210221021212102121022102210212102210221021210221021
212102121022102210212102210212121021212102121022102121
210212121021210221021212102121022102210212102210212121
021212102121022102121210212102210221021210221022102121
022102121210212102210221021210221022102121022102121210
212102210221021210221021212102121210212102210212121021
210221022102	
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Pisot	#	1.46557...	
This	grammar	is	of	Pisot	type,	but	is	neither	Endocentric	nor	Polygonal.	
	 	 	2	!	2	1		
	 	 	1	!	0	
	 	 	0	!	2	

210221210210221022121022121021022121021022102212102102
210221210221210210221022121022121021022121021022102212
102212102102212102102210221210210221022121022121021022
121021022102212102102210221210221210210221022121022121
021022121021022102212102102210221210221210210221022121
022121021022121021022102212102212102102212102102210221
210210221022121022121021022102212102212102102212102102
210221210221		
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Part	IV		

•  The	X-bar	schema	
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The	X-bar	schema.	

Of	all	the	ways	that	syntacWc	structure	could	be	built	up,	one	parWcular	‘growth	
soluWon’	seems	to	dominate	in	natural	language.	

This	is	the	so-called	X-bar	schema:	

	XP	=	[ZP	[X0	YP]]	

In	words:	a	phrase	of	any	type	(a	verb	phrase,	noun	phrase,	whatever,	thus	an	
XP(hrase))	is	built	around	a	head	(X0),	with	asymmetrically	arranged	‘slots’	for	
two	addiWonal	phrases	of	the	same	shape.	

NP	=	[The	barbarians’	[destrucWon	[of	Rome]]	

Sentence	=	[The	barbarians	[destroyed	[Rome]].	

	The	phrasal	off-branches	(YP,	ZP)	may	be	expanded	indefinitely:		

[The	ravening	hordes	of	barbarians]	[destroyed	[the	gleaming	city	on	the	hill]],	
and	so	on.	
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A	none-too-innocently-chosen	
example	

•  As	an	illustraWon	of	one	kind	of	paUern	of	recurrence,	
consider	the	familiar	“X-bar	schema”	(Chomsky	1970,	
Jackendoff	1977).	

•  This	is	a	“recipe”	for	structure	building:	to	build	a	
phrase	(XP),	combine	a	terminal	(X0)	with	a	phrase	(YP),	
then	combine	the	result	(X’)	with	another	phrase	(ZP).	
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Background:	[Spec	[Hd	Comp]]	
•  Since	Chomsky	(1970),	it	is	widely	held	that	the	syntacWc	structures	of	natural	

language	are	constructed	around	the	‘X-bar	molecule’	shown	below:	
     XP 

   ZP     X’ 

     X0     YP	
•  The	claim	is	that	one	finds	phrases	(XPs)	of	only	the	following	shapes:	

    a.  XP = X0 
    b.  XP = [X0 YP] 
    c.  XP = [ZP [X0 YP]] 

•  One	does	not	find	‘exocentric’	phrases	such	as		
  *XP = [YP ZP]   (contra Starke 2004) 

•  Nor	phrases	with	more	than	a	single	complement	and	specifier: 
  *XP = [WP [ZP [X0 YP]]]  (contra Chomsky 1995a) 

•  Nor	phrases	in	which	the	head	(X0)	is	not	at	the	‘boUom’:	
  *XP = [X0 [YP ZP]]  (but see Moro 2000, Pereltsvaig 2006, below) 
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The	Golden	Phrase	
•  I	suggest	that	we	should	add	to	the	family	of	
related	“golden”	mathemaWcal	objects	(the	
golden	number/secWon/mean;	the	golden	
angle,	the	golden	string)	

•  The	“Golden	Phrase”,	i.e.	the	X-bar	schema.	
•  In	essence,	this	phrasal	shape	is	the	
expression,	in	binary-branching	syntacWc	
trees,	of	the	very	same	Fibonacci	theme.	

•  This	kind	of	phrasal	organizaWon	has	a	number	
of	“special”	properWes…	
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The	Golden	Phrase	is	special	
•  In	what	follows,	I	will	point	to	three	consideraWons	
which	pick	out	this	kind	of	phrase	structure	as	
special:	
–  (1)	The	X-bar	schema	is	the	simplest	kind	of	
syntacWc	(mulW-)fractal.	

–  (2)	The	X-bar	schema	is	the	minimal	semanWc	
generator,	the	first	shape	to	unlock	the	full	set	of	
predicate-argument	meanings.	

–  (3)	X-bar	grammar,	with	specifier-head-
complement	order,	yields	strings	related	to	the	
Golden	String	(infinite	Fibonacci	word);	it	has	the	
lowest	ambiguity	among	“binary	generators	of	
binary”.	
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•  “Arguably,	this	configuraWonal	schema,	known	as	X-bar	
theory,	is	the	only	kind	of	structure	that	syntac4c	
representa4ons	exploit.	Other	structural	opWons,	such	
as	adjuncts	to	phrases,	mulWple	specifiers	of	a	single	
head,	etc.,	have	been	experimented	with	in	various	
ways	but	Cartographic	research	has,	for	the	most	part,	
eschewed	these	opWons,	retaining	only	the	core	
structures	afforded	by	the	X-bar	schema.	Indeed,	
Cinque	(1999)	argues	forcefully	against	the	adjuncWon	
of	adverbials[...]	The	core	structural	relaWons	defined	
by	X-bar	theory	seem	to	be	not	only	necessary,	but	
sufficient	to	characterize	syntac4c	structure.”		

•  	(Shlonsky	2010:	2;	emphasis	added	-	DPM)	
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Why is language that way?   
This structure might follow from 
more general principles. It is 
suggestive that the X-bar pattern 
generates the Fibonacci numbers, 
which arise in many natural systems.  
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Consider	how	X-bar	analyses	may	be	assigned	to	strings	(where	an	XP	can	be	
expanded	as	X0,	[X0	YP],	[ZP	[X0	YP]]).	
	 	For	each	string	length,	there	are	a	number	of	X-bar	branching	
structures	that	could	underlie	it:	

ABCD:	[A	[B	[C	[D]]]],	[[AB][CD]],	etc.	
	For	a	given	string	length,	there	is	a	minimal	depth	any	X-bar	analysis	
must	have.		E.g.,	string	length	3	requires	depth	2,	as	does	4;	once	you	get	
to	5,	you	need	a	tree	that	has	depth	3.	

Fibonacci	string	lengths	are	special,	in	that	they	are	the	first	length	to	push	
the	required	tree-depth	one	deeper	(thus,	6-	and	7-long	strings	also	‘fit’	
in	depth	3	trees;	8	is	the	first	length	to	necessarily	push	the	tree	4	deep)	.		
Below:	13-long	string	(ABCDEFGHIJKLM),	forcing	depth-5	X-bar	analysis.	

39	
 

3/10/2013	 39	



`	
•  hUp://www.mcs.surrey.ac.uk/Personal/R.KnoU/Fibonacci/fibrab.qt	
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•  So:	the	sequences	of	large/small	open	categories	on	the	
boUom	‘fronWer’	of	the	parWal	expansion	of	the	maximal	X-
bar	tree	follow	the	golden	sequence	exactly.	

•  …in	fact,	are	successive	Fibonacci	length	porWons	of	that	
object.		

•  The	classificaWon	of	those	open	categories	as	specifiers	or	
complements	is	a	slightly	different	paUern.		

•  The	spec/comp	sequence	also	follows	the	golden	string	
paUern,	but	starts	at	index	2.	

•  Likewise,	if	one	examines	the	sequence	of	head	posiWons,	
marked	for	whether	they	are	introduced	in	the	last	generaWon	
(boUom	line	of	the	tree)	or	not,	one	also	finds	the	GS	starWng	
at	index	2.	
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•  According	to	Chomsky	&	Halle	(1968)	(see	also	Bresnan	1971,	
1972,	Cinque	1993)	

•  The	deepest	part	of	a	syntacWc	tree	gets	maximal	stress	
(Nuclear	Stress	Rule)...	

•  Reading	sequence	of	stress	maxima	(black	heads)	and	non-
maxima	(grey	heads)	from	le}	to	right	in	an	idealized	X-bar	
tree	expanded	to	uniform	depth,	we	get	the	Fibonacci	word:	

3/10/2013	 42	



X-bar	form	without	labels	

•  A	tradiWonal	way	to	describe	this	parWcular	paUern	is	with	
phrase	structure	rules	(PSRs),	as	below:	
	 	 	XP		!		ZP	X’	
	 	 	X’			!		X0	YP	

•  Ignoring	labels,	we	can	write	this	as:	
	 	 	XP		!		XP	X’	
	 	 	X’			!		X0	XP	

•  Or,	even	more	simply	and	abstractly,	using	0s	to	represent	
terminals,	and	higher	numbers	(1,	2)	to	represent	disWnct	
kinds	of	non-terminals:	
	 	 	2		!		2	1	
	 	 	1			!	0	2	
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Bare	recursion	

•  Of	course,	the	X-bar	schema	is	more	than	just	a	
structure-building	paUern;	it	also	incorporates	
the	further	noWon	of	labeling	or	headedness.	

•  In	what	follows,	I	ignore	this	aspect,	considering	
only	the	recurrence	paUern.	

•  On	this	view,	the	X-bar	schema	resolves	as	a	
simpler	object	that	can	be	depicted	as	below:	
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X-bar	paUern	as	matrix	

		 							XP	out		X’	out	

XP	in	

X’		in	

Rows	and	columns	are	
associated	with	the	kinds	of	
non-terminals.	

Rows	can	be	thought	of	as	
inputs	to	phrase	structure	
rules;	

Columns	are	the	outputs.	
Only	non-terminals	are	

represented,	and	we	ignore	
linear	order.	

.	
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Let’s	make	that	clearer:	

		 							XP	out		X’	out	

XP	in	

X’		in	

This	representaWon	doesn’t	
record	linear	order.			

Terminals	are	expressed	only	
indirectly	here.	

A	non-terminal	introduces	a	
terminal	if	its	associated	
row	sums	to	less	than	2.	

E.g.	the	second	type	of	non-
terminal	(X’)	introduces	a	
single	terminal	because	its	
row	adds	up	to	1;	the	first	
(XP)	row	sums	to	2,	
indicaWng	it	immediately	
dominates	no	terminals.	
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Part	V	

•  Expressive	Power	
•  The	X-bar	schema	is	the	“minimal	semanWc	
generator”	
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X-bar	schema	and	semanWc	expressive	
power	

•  There	is	another	reason	to	think	that	the	X-bar	form	is	“special”	

•  Related	to	its	expressive	power	when	mapped	to	semanWc	interpretaWon.	

•  The	X-bar	schema	is	the	minimal	seman-c	generator.	

•  In	the	sense	that	predicaWons	of	any	internal	structure,	stated	with	
predicates	of	arbitrary	adicity,	

•  Can	be	expressed	in	a	X-bar	syntacWc	form	(uWlizing	the	syntacWc	
equivalent	of	SchoenfinkelizaWon/Currying).	

•  But	no	simpler	form	will	do.	

•  In	other	words,	the	X-bar	schema	is	just	right:	just	big	enough	to	get	the	
job	done	(i.e.	to	express	any	kind	of	predicaWon)	--	having	a	larger	phrasal	
shape	doesn’t	buy	you	any	addiWonal	expressive	power.	
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Bicomplex	predicaWon	
•  Note	the	following	about	predicate-argument	
structure	in	natural	language:	

•  Both	predicates	and	arguments	may	contain	further	
predicate-argument	structure:	

Simple: 	 	[Arg	The	people]		[Pred	know].	
Complex	Arg: 	[Arg	The	people	[Arg	you]		[Pred	met	t]	]		
	 	 	 	 	 	[Pred	know].	

Complex	Pred: 	[Arg	The	people]			
	 	 	 	 	[Pred	know	[Arg	you]	[Pred	exist	t]	].	

Bi-Complex:	[Arg	The	people	[Arg	you]		[Pred	met	t]	]			
	 	 	 	 	[Pred	know	[Arg	you]	[Pred	exist	t]	].	
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•  I	adopt	the	minimal	noWon	of	composiWonality	depicted	above.	

•  Bicomplexity	in	semanWc	composiWon	requires	bicomplex	syntax.	

•  Bicomplex	syntax:	two(+)	growth	points	per	molecule.	
•  So,	at	least	as	complex	as	X-bar	(or	D-bar?).	
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(A)Symmetry,	Fractal	SemanWcs?	
•  Conceivably,	the	structural	asymmetry	inherent	in	the	dominant	X-bar	

form	is	“recruited”	for	the	semanWc	asymmetry	between	predicates	and	
arguments.	

•  Making	it	more	useful,	in	a	sense:	not	only	do	you	get	bicomplex	
semanWcs,	you	get	asymmetric	bicomplexity,	a	basis	for	Fregean	semanWc	
asymmetry.			

•  A	crucial	case	here	is	the	structure	of	the	copula,	argued	to	be	this	(Moro	
2000,	Pereltsvaig	2006):	

[cop	[SC	XP		YP]]	
•  This	is	a	(parWal)	manifestaWon	of	X-bar’s	obscure		

	sibling,	the	apparently	rare	D-bar	configuraWon.	
•  Crucial	property:	symmetry	between	the	two	objects	combined	(the	two	

growth	points	in	the	phrasal	shape).	
•  Here,	we	have	a	symmetric	syntacWc	form	just	where	we	need	it	to	

construct	a	symmetric	meaning	(equaWon).	
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Part	VI	

•  Fractals	
•  X-bar	schema	is	the	simplest	syntacWc	schema	
generaWng	a	line	fractal	

•  In	fact	a	mulW-fractal	

•  With	“golden”	Hausdorff	dimension	
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53	

Next:	Fractals	&	the	Cantor	Set	
Fractals	are	self-similar	objects	of	non-whole-number	dimension;	

their	“size”	depends	on	the	scale	at	which	they	are	measured.	
The	Cantor	set	is	formed	from	a	line	segment,	by	removing	the	

middle	third,	then	middle	thirds	of	the	remainders...	
This	is	the	simplest	fractal:				

	Background	dimension	cannot	be	lower	than	a	1-dimensional	line.			
	Division	in	thirds	is	the	first	scheme	yielding	a	fractal.	

The	self-similarity	here	invites	a	kind	of	phrasal	analysis:	within	
each	“generaWon”,	there	are	two	copies	of	the	whole,	and	one	
“dead	end”	(deleted	segment	~terminal):	
	 		

53	
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X-bar	schema	as	(mulW)fractal	
•  Consider	mapping	the	X-bar	

schema	to	a	line	segment,	

•  Such	that	binary	branching	in	
the	syntacWc	form	
corresponds	to	geometric	
halving,	

•  And	heads/terminals	
corresponding	to	deleWng	a	
line	segment.	
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And	so	on:	fractal	structure	
•  Of	course,	ZP	and	YP	

themselves	have	the	same	
internal	structure	as	XP:	

•  ConWnued	indefinitely,	this	
produces	an	asymmetric	(or	
two	scale)	Cantor	set.	

•  Each	generaWon	has	one	½	
and	one	¼	scale	copy	of	the	
whole.	
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Asymmetric	Cantor	set	~	X-bar	Wling	
As	a	fractal,	this	has	a	number	of	properWes	worth	menWoning.	

It	is	the	simplest	kind	of	syntacWc	fractal;	i.e.	it	is	the	smallest	
kind	of	self-similar	binary-branching	object	whose	non-
terminal	image	on	the	line	is	neither	the	full	line,	nor	a	single	
point.		

Its	(Hausdorff)	dimension	is	log2(Phi)	~.694	
It	is	actually	a	mulW-fractal	(each	unit	of	structure	contains	two	

copies	of	the	whole,	at	different	scales	(½	&	¼).	
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Part	VII	

•  Binary	generators	of	binary	
•  Specifier-head-complement	linearizaWon	of	X-
bar	is	in	the	set	of	such	with	lowest	staWc	
ambiguity.	

•  And	may	have	lowest	dynamic	ambiguity.	
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CondiWons	for	a	“language-like”	phrase	structure	system.	
Binary	alphabet;	1	!	x	y,	0	!	z	w;	x,y,z,w	in	{0,	1,	*}	

•  K	
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The	table	below	is	all	conceivable	binary	phrase	
structure	systems;	those	ruled	out	as	

“unreasonable”	are	color-coded	for	the	condiWon	
they	violate.	

•  J	

What’s	so	special	about	
this	one,	the	Fibonacci	
grammar	associated	
with	Spec-Head-Comp	

X-bar?	

3/10/2013	 59	



StaWc	ambiguity	of	binary	generators	of	binary	understood	as	
term-rewriWng	systems	

•  In	terms	of	ambiguity	of	complete	output	strings	(with	*	null),	X-bar	as	
understood	above	is	one	of	16	possibiliWes	of	its	‘size’	(the	others	are	
alternaWve	linearizaWons	of	X-bar	and	the	other	‘reasonable’	3-type	
systems).	

•  In	that	group,	the	possibiliWes	fall	into	three	equivalence	classes:	
•  The	class	containing	the	GS/X-bar	form	has	the	lowest	ambiguity	for	the	

cases	I’ve	worked	out:	for	a	string	length	n,	there	are	two	unambiguous	
strings,	two	maximally	ambiguous	(full	Catalan	number	of	analyses)	
strings,	and	some	number	of	intermediately-ambiguous	strings.	

•  Another	class	(D-bar)	accepts	every	string	of	a	given	length,	and	assigns	
the	full	Catalan	number	of	analyses	to	each.	

•  The	third	class	(Spine	of	Spines)	accepts	only	a	single	string	of	each	length,	
but	assigns	an	infinite	number	of	possible	analyses	to	it.	

3/10/2013	 60	



Why	SHC?	
•  Mirror	order	linearizaWon	(comp-head-specifier,	CHS)	of	X-bar	

structures	would	yield	strings	which	are	backwards	porWons	of	the	
Golden	String;	thus	SHC	X-bar	and	CHS	X-bar	have	equivalent	
structural	ambiguity	in	a	staWc	sense,	over	complete	strings.		

•  But	SHC	X-bar	is	more	useful	for	dynamic	recovery	of	structure	from	
strings.		

•  It	is	easier	to	compare	an	incoming	sequence,	bit-by-bit	against	a	
known	standard,	from	an	invariant	beginning	up	to	a	variable	
ending	(as	for	SHC	X-bar),	rather	than	from	variable	ending	
backwards	to	invariant	beginning	(as	for	mirror-order	CHS	X-bar).	

•  On	the	other	hand,	‘mixed’	X-bar	linearizaWons	(SCH,	HCS)	would	
fail	to	form	the	relevant	golden	sequence.	
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Le}:	strings	
accepted	by	
Fibonacci	

grammar			1!	
10,	0	!	1	(~X-

bar),	and	
analyses	

assigned	to	
each;	lengths	3	

and	4.	

•  J	
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•  H	
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Part	VIII	

•  Catalogue	of	discrete	infinite	phrasal	paUerns	
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Discrete	infinity	

•  It	is	an	old	insight	that	natural	language	is	a	
system	of	“discrete	infinity”	

•  von	Humboldt’s	“infinite	use	of	finite	means”	

•  The	finite	means	being	discrete	atomic	
elements:	words,	morphemes,	features.	

•  And	infinite	use	implicaWng	recursion.	
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Studying	discrete	infinity	

•  In	what	follows,	I	report	some	results	obtained	
from	a	study	of	generalized	discrete	infinity.	

•  I	examine	the	disWnct	binary-branching	(Kayne	
1984,	1994)	recurrence	paUerns	that	could	form	
the	basis	for	discrete	infinity.	
–  i.e.,	self-similar	arrangements	of	terminals	and	non-
terminals	

–  Terminals	being	the	“discrete”	part,	non-terminals	the	
“infinite”	part.	

•  Goal:	describe	and	classify	the	possibiliWes	and	
their	properWes.	

3/10/2013	 66	



AlternaWve	phrasal	arrangements…	

•  What	follows	is	concerned	with	showing	that	the	X-
bar	schema	has	a	lot	to	recommend	it,	when	
compared	against	other	ways	that	phrases	might	be	
assembled.	

•  We’ll	therefore	need	to	consider	what	else	is	possible	
--	what	else	could	phrases	look	like?	
–  Take	phrases	to	be	recursive	‘recipes’	for	structure	
building.	

–  Assume	binary	branching	(Kayne	1984).	
–  Phrases	enable	discrete	infinity;	concretely,	they	contain	
terminals,	and	non-terminals.	
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Maximal	expansion:	L-system	
treatment	

•  I	will	invesWgate	the	properWes	of	different	paUerns	by	idealizing	
them	as	rigid	local	tree-building	schemata,	

•  And	seeing	what	happens	when	they	are	expanded	maximally.	
•  This	amounts	to	treaWng	them	as	Lindenmayer	(L-)	systems,	

pioneered	by	Lindenmayer	(1968)	to	invesWgate	plant	growth	
“algorithmic	botany”.	

•  L-systems	are	like	familiar	PSGs,	but	all	rewrite	rules	apply	
obligatorily	and	simultaneously.	

•  I	will	consider	paUerns	that	are	rigidly	uniform	(corresponding	to	
determinisWc	context	free	(D0L)	systems).	

•  There	is	a	rich	literature	on	this,	much	of	it	irrelevant	to	my	work	–	
largely	because	I	ignore	linear	order,	and	much	work	on	L-systems	is	
concerned	with	words	and	word	sequences.	
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Next:	cataloguing	the	possibiliWes	

•  With	this	in	hand,	let’s	turn	to	cataloguing	the	
various	possibiliWes	for	discrete	infinite	
paUerning.	

•  The	possibiliWes	are	naturally	parWWoned	by	
the	number	of	non-terminal	types	they	are	
defined	over.	

•  The	simplest	class	has	a	single	non-terminal.	
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Simplest	‘molecule’	of	structure:	one	level	of	
embedding.	

If	we	restrict	possibiliWes	to	a	single	layer	of	syntacWc	
combinaWon,	only	one	shape	yields	discrete	infinity:	

•  The	Spine,	Phrase	=	[terminal	Phrase].	
	 	1	!	0	1	

The	other	naïve	possibiliWes,	

•  	Phrase	=	[Phrase	Phrase]		
	 	1	!	1	1		

•  or	Phrase	=	[terminal	terminal],		

	 	1	!	0	0	
obviously	could	not	serve	as	bases	for	a	language-like	system.	
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One	non-terminal	

•  There	is	really	only	one	discrete	
infinite	paUern	with	one	non-
terminal	type:	the	Spine,	below.		

•  The	Pair	(above	right)	is	discrete	
but	not	infinite;	the	Bush	(below	
right)	is	infinite	but	not	discrete.		
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Two	non-terminals	

•  D-bar	and	X-bar	have	“high-headed”	
variants	--	really	the	same	recurrence	
paUern,	oriented	differently	with	
respect	to	the	root.	

•  Again,	the	matrix	formulaWon	allows	
us	to	express	this	nicely;	the	related	
paUerns	have	similar	matrices,	in	the	
algebraic	sense.	
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System						Tree 											Matrix 					Recurrence	rela-on	 	Growth	Factor	

Spine 	 	 	 	 	1 	 	 	an	=	an-1 	 	1	

X-bar 	 	 	 	 	1		1	 	 	an	=	an-1	+	an-2 	Phi	~	1.618	
	 	 	 	 	 	 	1		0	

D-bar 	 	 	 	 	0		1	 	 	an	=		2an-2 	 	√2	~	1.414	
	 	 	 	 	 	 	2		0	

Spine	of	
Spines 	 	 	 	 	1	1	 	 	?	(complicated) 	1	
	 	 	 	 	 	 	0	1		

3-bar 	 	 	 	 	1		1		0 	 		an	=	an-1+an-2+an-3 	~1.839		
	 	 	 	 	 	 	1		0		1 	 						“Tribonacci	constant”	
	 	 	 	 	 	 	1		0		0	
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Finally,	brief	survey	of	3	non-terminals	

•  Moving	up	the	scale	of	paUern	complexity,	the	
next	class	(built	with	three	kinds	of	non-
terminal)	has	57	disWnct	members.	

•  In	the	next	slides,	I	illustrate	just	a	few	of	
these.	
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Further	3-type	systems	

•  Here	are	some	more	examples	from	this	class:	
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Prime	growth	factors	by	class	
•  #	Non-terminals 	Values	

•  1: 	(2),	1,	(0)	

	In	this	simplest	kind	of	phrasal	paUerning,	there	is	only	one	opWon,	the	
Spine,	with	growth	factor	1.	I	include	in	parentheses	the	“illegiWmate”	
Bush,	with	growth	factor	2,	and	Pair,	with	growth	factor	0.	

•  2:	 	1.61803,	1.41421		
•  With	2	non-terminals,	we	find	two	“prime”	growth	values,	associated	with	

the	X-bar	and	D-bar	families.	I	do	not	list	again	growth	factors	for	
“composite”	systems	like	the	Spine	of	Spines,	as	they	are	drawn	from	
lower	classes	(in	this	case,	the	Spine	of	Spines	has	growth	factor	1).	

•  3:	 	1.83929,	1.80194,	1.76929,	1.75488,	1.73205,	1.69562	(*2),	1.58740,	
1.52138,	1.46557,	1.32472,	1.25992		

•  These	are	the	“new”	growth	values	from	the	class	beyond	X-bar,	including	
3-bar	(with	the	largest	growth	value,	the	tribonacci	constant).	Note	that	
two	disWnct	families	of	paUerns	have	the	same	growth	value	(1.69562).	
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Growth	factors	with	3	non-terminals	

•  K	
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Growth	factors	for	prime	systems	over	
4	non-terminals	

•  4:	 	1.92756,	1.92129,	1.91439,	1.90517,	1.89932,	1.89718,	1.89329,	
1.88721,	1.88320,	1.87939*,	1.87371,	1.87018,	1.86676,	1.86371,	
1.85356,	1.85163,	1.84776,	1.83509,	1.82462,	1.82105,	1.81917,	1.81712,	
1.80843,	1.79891,	1.79632,	1.79431*,	1.79004,	1.78537,	1.74840,	
1.74553,	1.72775,	1.72534,	1.72208,	1.71667,	1.71064,	1.70211,	1.69028,	
1.68377,	1.68179,	1.67170,	1.66980,	1.65440,	1.65289,	1.64293,	1.60049,	
1.56638,	1.55898,	1.55377,	1.54369,	1.51288,	1.49453,	1.49022,	1.44225,	
1.39534,	1.38028,	1.35321,	1.27202,	1.22074,	1.18921	

•  [59	disWnct]	
•  These	are	the	new	“prime”	growth	factors	from	the	set	of	phrasal	paUerns	

with	4	non-terminal	types.	CollecWng	them	allows	a	check	on	whether	the	
set	of	systems	has	been	fully	reduced	(eliminaWng	redundancies	and	
degeneracies);	“prime”	values	should	appear	in	a	number	of	systems	that	
is	a	mulWple	of	4	(cf	remarks	above	on	the	“doubled”	value	1.69562	in	the	
three-types	set,	appearing	in	two	disWnct	families;	it	shows	up	with	6	
systems	rather	than	3,	as	for	the	other	values).	

3/10/2013	 78	



•  J	
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•  K	
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•  L	
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Part	XI	

•  Matrix	treatment	of	phrasal	paUerns	
– Maximal	growth	is	iterated	matrix	mulWplicaWon	

– Growth	factor	as	dominant	eigenvalue	
– CharacterisWc	polynomials	
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A	noWon	of	syntacWc	“growth”	

•  As	we	saw	on	the	last	slide,	the	X-bar	paUern	“grows”	
more	nodes	per	line	than	the	alternaWve	(HH	D-bar)	as	
it	is	expanded.	

•  I’ve	explored	elsewhere	some	reasons	to	think	that	
faster	growth	in	this	sense	is	a	desirable	property	(all	
else	equal);	I	won’t	review	that	here.	

•  For	present	purposes,	let’s	just	assume	that	growth	in	
this	sense	is	something	worth	invesWgaWng.	

•  How	can	we	quanWfy	this	noWon	of	growth,	and	what	
are	the	growth	properWes	of	the	conceivable	discrete	
infinite	recurrence	paUerns?	

3/10/2013	 83	



Growth	factor	

•  IntuiWvely,	we	want	to	find	a	“growth	factor”	G	
for	each	paUern.	

•  This	number	describes	how	the	number	of	
nodes	on	one	line	of	the	tree	relates	to	the	
number	of	nodes	on	the	previous	line.	

•  We	take	G	to	be	(basically)	the	limit	of	the	
raWo	of	the	number	of	nodes	on	line	n,	to	the	
number	of	nodes	on	line	n-1,	as	n	gets	large.	
– Thus,	nodes	(n)	=	G	*	nodes	(n-1)	
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G	is	the	dominant	eigenvalue	of	the	
phrasal	recurrence	matrix.	

•  Here,	expressing	phrasal	recurrence	paUerns	as	
matrices	brings	its	first	rewards.	

•  Matrices	can	be	interpreted	in	several	different	
ways;	a	natural	and	important	interpretaWon	is	as	
a	linear	mapping.	

•  Under	this	interpretaWon,	the	n	x	n	(square)	
matrices	we’ll	be	considering	(expressing	how	n	
kinds	of	non-terminals	link	to	each	other),	
transform	a	point	in	n-dimensional	space	into	
another	point	in	n-space.	

3/10/2013	 85	



Phrasal	growth	~	iterated	matrix	
mulWplicaWon	

•  Take	A	to	be	the	relevant	phrase	structure	matrix	
•  Take	xi	to	be	a	column	vector	expressing	the	number	of		
each	kind	of	non-terminal	on	the	ith	line	of	the	tree.	

•  (we	idenWfy	the	non-terminals	with	the	coordinate	
axes:	the	number	of	non-terminals	of	a	given	type	is	
expressed	as	distance	along	the	associated	axis).	

•  Then	maximal	expansion	of	the	paUern	is	simply	
iterated	matrix	mulWplicaWon.	

	 	 	 	A	xi	=	xi+1	
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SyntacWc	growth	is	iterated	mapping	

•  The	syntacWc	problem	we	have	been	
considering	(how	do	phrasal	paUerns	grow?)	

•  Now	resolves	as	a	geometric	one:	

•  Given	some	input	vector	–	a	point	in	n-space,	

•  Where	does	that	vector	go	as	the	mapping	
iterates?	

•  Thinking	of	things	this	way	lets	us	see	why	G	is	
the	dominant	eigenvalue.	
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Eigenvalues	and	eigenvectors	

•  An	important	property	of	a	square	matrix	is	its	set	of	
eigenvectors	and	eigenvalues.	

•  In	general,	the	transformaWon	of	n-space	induced	by	matrix	
mulWplicaWon	is	quite	complicated.	

•  The	eigenvectors	represent	points	of	stability	amidst	the	
complexity	of	the	mapping:	

•  They	are	the	vectors	that,	under	the	transformaWon,	retain	
their	direcWon.	

•  i.e.,	for	eigenvector	v	=	ax	+	by	+	cz…	
		 	Av	=	λv					 						(=	λax	+	λby	+	λcz…)	

•  The	scaling	factor	λ		is	the	eigenvalue	associated	with	that	
eigenvector.		

3/10/2013	 88	



Why	G	is	the	dominant	eigenvalue	

•  Suppose	the	starWng	vector	is	ax	+	by	…	
•  We	can	rewrite	it	in	terms	of	the	eigenvectors	(a	standard	

and	powerful	technique):	
	 	 	ax	+	by	…		=		cv1	+	dv2	…			
	 	 	vi	an	eigenvector	with	eigenvalue	λi	

•  MulWplicaWon	by	the	matrix	n	Wmes	has	a	parWcularly	nice	
expression	in	terms	of	the	eigenvectors:		
	 	 	λ1ncv1	+	λ2ndv2	…	

•  Suppose	λ1	is	the	largest	(i.e.	dominant)	eigenvalue;	as	n	
increases,	the	sum	of	component	vectors	converges	on	
λ1ncv1	(for	non-zero	c).	

•  Thus,	xn	~		λ1xn-1;	λ1	is	the	desired	quanWty	G.	

3/10/2013	 89	



Best	growth:	generalized	X-bar	

•  The	highest	growth	factor	in	the	2	non-terminal	class	
belongs	to	X-bar:	the	golden	mean,	associated	with	the	
Fibonacci	numbers.	

•  The	largest	growth	factor	with	three	non-terminals	is	the	
“tribonacci	constant”,	in	the	generalized	X-bar	format	in	this	
class	(an	X-bar	like	paUern	with	two	specifiers	per	phrase).	
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Composite	systems	

•  With	two	non-
terminals,	we	find	our	
first	examples	of	
“composite”	systems:	

•  PaUerns	that	have	
“smaller”	subpaUerns	
(i.e.,	subtrees	generated	
with	less	than	the	full	
set	of	non-terminals)	
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FactorizaWon	of	composite	systems	

•  For	example,	consider	the	
Spine	of	Pairs	(top	right).	

•  This	paUern	is	composed	of	
Pairs	(boUom	right)	
subsWtuted	within	a	Spine	
(center	right).	

•  Its	polynomial	is	the	
product	of	the	polynomials	
of	its	components:	
	 	x2	–	x	=	(x	–	1)*x	

•  Its	roots	are	those	of	its	
components;	G	is	the	
largest	among	these	roots.	

•  K	
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Growth	in	composite	systems	

•  Composite	systems	are	composed	of	simpler	paUerns,	one	
subsWtuted	inside	another.	

•  (This	is	opposed	to	“prime”	paUerns,	irreducible	in	terms	of	
simpler	paUerns)	

•  How	does	the	growth	of	the	larger	paUern	relate	to	the	
growth	of	its	component	sub-paUerns?	

•  Here	again,	the	matrix	formulaWon	provides	the	answer:	
•  The	growth	factor	of	the	larger	paHern	is	just	the	largest	

of	the	growth	factors	among	its	components.	
•  This	is	so,	because	the	characterisWc	polynomial	of	a	

composite	system	is	the	product	of	the	polynomials	of	its	
component	systems.	

•  When	mulWplying	polynomials,	roots	are	preserved.	
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Even	more	abstract	

•  A	further	abstracWon	will	help	in	understanding	this	(and	
other)	paUern(s).	

•  Namely,	we	can	represent	the	recurrence	relaWons	by	means	
of	a	matrix:	

	 	 		

	 	 		

•  The	rows	and	columns	are	associated	with	the	disWnct	kinds	
of	non-terminal.		

•  The	rows	correspond	to	non-terminal	inputs	to	the	PSRs;	the	
columns	represent	non-terminals	in	the	output	of	each	PSR.	
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An	alternaWve	

•  Let’s	compare	the	X-bar	paUern	with	a	
superficially	very	similar	paUern,	

•  Which	also	constructs	each	phrase	from	a	
terminal	and	two	further	phrases.	
– X-bar:	Phrase	=	[Phrase	[terminal		Phrase]]	

– HH	D-bar:	Phrase	=	[terminal	[Phrase	Phrase]]	

XP	!	X0	X’	

X’	!	XP	XP	
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Same	ingredients,	different	recipe:	different	result.	

•  Consider	what	happens	as	we	“inflate”	these	paUerns,	
expanding	them	maximally:	
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Back	to	comparing	X-bar	and	HH	D-bar	

•  This	insight	lets	us	capture	the	difference	in	
growth	between	X-bar,	and	the	HH	D-bar	
alternaWve,	very	simply	and	directly.	
		 	 	 	X-bar: 	 	 	HH	D-bar:	

G:	 	 	ϕ	~	1.618	 	 	 	 	 	√2	~	1.414		

		 	 	(the	golden	mean)	
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An	example	

•  Growth	of	the	X-bar	paUern	in	these	terms:	
•  At	the	root,	there	is	a	single	XP-type	non-terminal;	thus	
the	iniWal	vector	x0	is										.		

					A	x0	=	x1																																		x																	=	

•  That	is,	the	next	line	(x1)	contains	one	XP-type	non-
terminal,	and	one	X’-type.	

•  ConWnuing,	we	get	the	following	sequence	of	vectors,	
represenWng	the	number	of	non-terminals	on	
successive	lines	of	the	tree:	
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X-bar	growth	illustrated	with	vectors	
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X-bar	(dominant)	eigenvector	
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One	more	bit	of	math	

•  Associated	with	each	square	matrix	is	a	
characteris4c	polynomial.	

•  Among	other	important	properWes,	the	
characterisWc	polynomial	has	as	its	roots	
(soluWons	when	it’s	set	equal	to	0)	the	
eigenvalues	of	the	matrix.	

•  The	X-bar	paUern	has	characterisWc	
polynomial	x2	–	x	–	1;	for	HH	D-bar,	it’s	x2	–	2.		
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CharacterisWc	polynomials	and	linear	recurrence	relaWons.	

•  The	X-bar	phrasal	form	generates	the	Fibonacci	numbers	1,1,2,3,5,8,13...	

•  In	numbers	of	each	type	of	non-terminal,	on	successive	lines	of	the	tree.	

•  For	example,		

–  there	is	1	XP	at	the	root,		
–  1	XP	on	the	next	line	(its	Spec),		
–  2	XPs	on	the	line	a}er	that	(Comp,	and	Spec	of	Spec),		

–  3	on	the	next	line	(Spec	of	Spec	of	Spec,	comp	of	Spec,	spec	of	Comp)	

–  5	on	the	next	(Spec	of	Spec	of	Spec	of	Spec,	Comp	of	Spec	of	Spec,	
comp	of	comp,	spec	of	comp	of	spec,	etc.	

•  Fib	numbers	obey	the	linear	recurrence	 	 	 	 	an	=	an-1	+	an-2.	
•  CharacterisWc	polynomial	of	the	X-bar	matrix	is	x2-x-1.	

•  Se|ng	equal	to	zero	and	manipulaWng	a	bit,	this	is	 	xn	=	xn-1	+	xn-2.	

•  The	characterisWc	polynomial	encodes	the	linear	recurrence	governing	the	
count	of	categories	on	successive	lines,	with	indices	in	the	addiWve	
recurrence	corresponding	to	powers	in	the	polynomial.	

•  This	is	quite	general,	holding	as	well	for	other	paUerns.	3/10/2013	 102	



Part	X	

•  Spectral	classes	
– Classifying	phrasal	matrices	in	terms	of	their	set	of	
eigenvalues	

– Endocentric	
– Pisot	
– Polygonal	
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Special	members	of	the	infinite	zoo	

•  As	we	can	see,	as	more	non-terminals	are	
allowed,	ever	more	paUerns	become	available.	

•  Is	there	anything	of	interest	to	be	said,	beyond	
mere	“stamp-collecWng”?	

•  Two	special	classes:	
–  Endocentric	(generalized	X-bar	systems).	

•  Have	highest	growth	factor	for	given	#	of	non-terminals.	
•  CharacterisWc	polynomial	xn	–	xn-1	-	...	–	x1	–	x0.		
•  Head,	complement,	and	some	number	of	specifiers;	
complement	and	specifiers	isomorphic	to	the	root.	

–  Polygonal	systems	(see	next	slide)	
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•  Let	us	call	the	degree	of	a	phrasal	paUern	the	degree	of	its	characterisWc	
polynomial.	Let	G	represent	the	dominant	(Perron-Frobenius)	eigenvalue	(i.e.,	the	
largest,	necessarily	real,	root	of	the	characterisWc	polynomial),	and	G’	stand	for	an	
arbitrary	Galois	conjugate	(a	disWnct	eigenvalue;	equivalently,	a	disWnct	root	of	the	
characterisWc	polynomial).		Among	the	“Prime”	systems	(those	whose	matrix	forms	
have	irreducible	characterisWc	polynomials),	the	three	classes	of	interest	are	as	
follows:	

•  The	Endocentric	class.		These	forms	can	be	described	as	generalized	X-bar	
schemata;	intuiWvely,	each	combines	a	head	at	the	deepest	level	with	a	
complement	phrase,	and	then	combines	the	result	with	some	number	of	specifier	
phrases	one	at	a	Wme,	to	make	a	full	phrase.	These	forms	have	the	largest	G	for	
systems	of	their	degree;	there	is	one	such	system	of	each	degree	(up	to	
permutaWon	of	which	non-terminal	is	chosen	as	the	root).	As	discussed	in	
Medeiros	(2008,	2012),	such	paUerns	are	likely	to	be	of	significance,	in	light	of	the	
thesis	of	“economy	of	command”	developed	in	those	works.	RelaWve	to	other	
paUerns	of	their	degree,	these	structural	formats	support	the	minimum	number	of	
c-command	relaWons.	
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•  The	Pisot	class.	These	paUerns	have	a	G	that	is	a	so-called	
Pisot-Vijayaraghavan	number,	an	algebraic	integer	(i.e.	
soluWon	to	a	polynomial	with	integer	coefficients)	that	is	
strictly	greater	than	1,	and	whose	Galois	conjugates	(here,	the	
various	G’)	are	all	of	magnitude	strictly	less	than	1.	Although	
discovered	only	in	the	20th	century,	these	numbers	have	been	
the	focus	of	considerable	interest	in	domains	like	number	
theory,	harmonic	analysis,	and	crystallography	(see	for	
example	the	works	collected	in	Moody	1997).	In	syntacWc	
terms,	these	paUerns	are	likely	to	be	significant	because	they	
have	a	kind	of	structural	purity;	all	eigenvectors	(interpreted	
as	a	parWcular	structural	‘theme’,	a	stable	raWo	among	non-
terminals)	save	the	dominant	one	vanish	as	the	paUern	is	
grown.		All	non-Pisot	systems,	in	turn,	have	infinite	growing	
‘warts’	of	structure	disWnct	from	the	dominant	theme.		
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•  The	Polygonal	class.	Finally,	there	is	a	class	of	paUerns	whose	G	is	of	
the	form	2cos(π/n).	These	forms	are	polygonal:	their	G	is	the	raWo	
of	the	shortest	internal	diagonal	to	a	side	in	a	regular	polygon.	They,	
and	only	they,	have	all	G’	that	are	real	numbers,	and	all	and	only	
their	matrices	are	diagonalizable	(i.e.,	similar	to	a	diagonal	matrix,	
with	all	entries	off	the	main	diagonal	0).		Diagonalizable	matrices	
are	significant	in	a	number	of	applicaWons,	in	part	because	they	are	
parWcularly	“well-behaved”;	the	non-diagonalizable	matrices	
corresponding	to	all	non-polygonal	matrices	are	called	defecWve.	
The	odd	polygonal	systems	(whose	G	relates	to	the	geometry	of	a	
polygon	with	an	odd	number	of	sides)	furthermore	have	symmetric	
matrices	(i.e.,	where	arbitrary	element	aij	=	aji).		These	are	a	special	
subcase	of	HermiWan	matrices	(equal	to	their	conjugate	transpose);	
the	matrix	operators	that	represent	physical	observables	in	
quantum	theory	are	always	HermiWan.	In	terms	of	the	
interpretaWon	of	eigenvectors	as	stable	syntacWc	configuraWons,	in	
polygonal	systems	the	growth	of	the	paUern	reflects	real	scaling	of	
each	of	its	components,	thus	an	inhomogeneous	dilaWon.		On	the	
other	hand,	all	non-polygonal	systems	have	eigenvectors	(stable	
configuraWons)	associated	with	some	complex	G’	whose	growth	
involves	a	kind	of	rotaWon.	
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Polygonal	phrasal	paUerns	

•  There	is	a	very	special	class	of	‘polygonal’	prime	paUerns,	whose	G	is	of	
the	form	2cos(π/n).	

•  This	number	expresses	the	raWo	of	the	shortest	internal	diagonal	to	a	side,	
in	a	regular	n-gon.		
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Some	polygonal	phrasal	forms	
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Polygonal	phrasal	
paUerns	

•  The	diagram	at	right	gives	
several	representaWons	of	
these	paUerns.	
–  The	growth	factor	G	
–  Relevant	polygon	
– Matrix	expressing	
syntacWc	recurrence	
among	non-terminals	

–  Tree	diagram	
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Diagonalizable	iff	polygonal	

•  It	turns	out	that	alone	among	all	the	paUerns	we	
get,	

•  All	and	only	the	polygonal	ones	have	
diagonalizable	matrices.	
– Ones	similar	to	a	diagonal	matrix,		

•  where	all	entries	off	the	main	diagonal	are	0.		

– Matrix	A	is	diagonalizable	iff	A	=	PDP-1.	
–  If	so,	then	An	=	PDnP-1.	

•  Diagonalizability	of	matrices	is	considered	an	
important	property	in	many	applicaWons.	
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Symmetric	(HermiWan)	iff	odd	
polygonal	

•  Moroever,	the	odd	polygonal	systems	(those	with	
growth	factor	related	to	a	regular	polygon	with	
an	odd	number	of	sides:	triangle,	pentagon,	
heptagon,	etc.)	

•  Have	symmetric	matrices	(aij	=	aji).	
–  This	is	an	even	nicer	property,	also	important	in	
physics.	

•  A	symmetric	matrix	with	real	entries	is	a	special	
case	of	a	HermiWan	matrix.	
–  In	quantum	theory,	physical	observables	always	
correspond	to	HermiWan	operators.	
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Symmetric	and	‘almost	symmetric’	matrices	in	
reorientaWons	of	polygonal	systems	
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CharacterisWc	polynomials	of	
polygonal	systems	

•  There	is	a	nice	relaWonship	between	the	
polynomials	for	these	paUerns	and	the	so-
called	Lucas	and	Fibonacci	polynomials.	

•  These	are	defined	similarly	to	the	addiWve	
series	of	the	same	name:	

•  Fibonacci:	 	1,	1,	2,	3,	5,	8,	13...	
•  Lucas:	 	 	2,	1,	3,	4,	7,	11,	19,	28....	
•  Different	“seeds”	fed	to	the	same	recurrence	
relaWon	an	=	an-1	+	an-2	
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Polynomial	recurrence:	Pn	=	x*Pn-1	+	Pn-2	

•  Lucas	Polynomials:	
2	
x	
x2	+	2	
x3	+	3x	
x4	+	4x2	+	2	
x5	+	5x3	+	5x	
x6	+	6x4	+	9x2	+	2		
…	

•  Fibonacci	Polynomials:	
1	
x	
x2	+	1	
x3	+	2x	
x4	+	3x2	+	1	
x5	+	4x3	+	3x	
...	
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Lucas	polynomials	and	even	
polygonals:	Pn	=	Alt(Ln)	

Lucas	polynomials:	
2	

x	
x2	+	2	

x3	+	3x	
x4	+	4x2	+	2	
x5	+	5x3	+	5x	

x6	+	6x4	+	9x2	+	2		
…	

CharacterisWc	polynomial	for	
even	polygonal	paUerns:	

x2	–	2		
x3	–	3x	

x4	–	4x2	+	2	
x5	–	5x3	+	5x	

x6	–	6x4	+	9x2	–	2			
…	
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Fibonacci	polynomials	and	odd	
polygonals:	Pn	=	alt(Fn)	–	alt(Fn-1)	

Fibonacci	Fn	

1	
x	
x2	+	1	

x3	+	2x	
x4	+	3x2	+	1	
x5	+	4x3	+	3x	

...	

CharacterisWc	polynomials	of	odd	
polygonal	phrasal	paUerns:	

x	–	1 	 	 	 	 	 	 	Spine,	triangle	

x2	–	x	–	1		 	 	 	 					X-bar,	pentagon	
x3	–	x2	–	2x	+	1 	 	 	 	heptagon	
x4	–	x3	–	3x2	+	2x	+	1	 	 	nonagon	
x5	–	x4	–	4x3	+	3x2	+	3x	–	1			undecagon	
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Part	XI	

•  Economy	of	command	in	phrase	structure	
– Endocentric	structure	minimizes	c-command	
relaWons	
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OpWmal	packing...	in	syntax?	
•  In phyllotaxis, the dominant Fibonacci pattern provides a 

dynamically optimal packing solution, spreading new elements as 
far apart as possible as the plant grows. 

•  Medeiros (2008, 2012) develops the idea that the Fibonacci-related 
X-bar schema is a dynamically  optimal solution to a derivational 
problem: Minimizing c-command relations. 

•  C-command relations are the scaffolding for long-distance 
dependencies of several kinds (binding, agreement, linearization, 
scope). 

•  Thinking of c-command as a search process, trees with fewer/shorter 
c-command relations are preferred; they minimize the space 
searched. 

•  Familiar concerns of locality in syntax are extended beyond 
choosing the shortest available dependency (the usual way of 
thinking); instead, locality directly informs structure-building. 
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“OpWmal	packing”	in	phrase	structure:	
C-command	&	Dominance	

 {a,{b,{c,d}}}                                       {{a,b},{c,d}}   
                       
  a                 {b,{c,d}}                            {a,b}                {c,d} 

        b             {c,d}           a             b        c             d 
•    

             c        d   
  Σ = 12     Σ = 10 

3/10/2013	 121	



Divergence	in	total	c-command	relaWons	for	Spine	vs	Bush	
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Some	PS	paUerns	to	compare	

123	
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Comparison	of	‘best	trees’	

124	

These	four	curves	
are	the	three-type	
possibiliWes;	X-bar	
Is	best	in	this	set.	
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PredicWon:	‘projecWons’	
•  The	consideraWons	above	do	not	uniquely	select	X-bar	as	THE	opWmal	

soluWon.	

•  Instead,	it	is	a	member	of	the	class	of	opWmal	soluWons.	

•  That	class	is	interesWng;	the	general	form	is	isomorphic	to	‘generalized	X-
bar’.	

•  Each	phrase	has	a	single	head	at	the	boUom,	and	slots	for	some	number	of	
other	phrases.	

•  In	other	words,	the	opWmal	soluWon	looks	like	an	X-bar	style	projecWon	
with	a	head,	complement,	and	zero	or	more	specifiers.	

•  This	is	not	forced	by	the	‘rules	of	the	game’;	I	consider	all	ways	of	self-
similarly	combining	lexical	items	into	larger	structures.	

•  One	interpretaWon	of	this	result	is	that	it	may	explain	why	natural	
language	has	the	principle	of	projecWon	--	because	phrasal	composiWon	via	
‘projecWons’	(in	a	purely	structural	sense)	is	opWmal.	

•  See	Medeiros	(2008)	for	more	details.	
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Part	XII	

•  Cephalotaxis	
– Comparing	phrasal	organizaWons	in	terms	of	“head	
packing”	

– Number	of	heads	grown	by	depth	of	maximal	
expansion	
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Cephalotaxis	

•  The	next	few	slides	compare	the	‘head	growth’	of	
various	conceivable	phrasal	organizaWons.	

•  As	we	allow	the	structural	molecule	to	be	larger,	
many	more	possibiliWes	become	available:	
–  The	X-bar	class	contains	6	possibiliWes.	
–  The	next	larger	class	contains	57	possibiliWes	(the	best	
performers	are	graphed	here).	

–  The	class	beyond	that	has	743	possible	phrasal	formats;	I	
haven’t	gone	beyond	enumeraWng	them.	
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Squeezing	from	one	to	higher	dimensions	under	
a	global	‘radial’	gradient	

•  In	phyllotaxis,	we	have	a	one-dimensional	stream	of	
informaWon	--	periodicity	of	budding	at	the	apical	
meristem	--	mapping	into	a	higher-dimensional	
distribuWon	(the	arrangements	of	the	florets	in	a	
seedhead,	say).	

•  There	are	two	‘forces’	at	work	here:	
•  	the	growth	itself	pushing	the	meristem	forward	and	
separaWng	the	old	growths	--	modeled	by	D&C	with	a	
radial	magneWc	field	gradient,	

•  And	mutual	repulsion	among	the	individual	
elements,	tending	to	spread	them	apart	near	the	
point	of	origin.	
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Squeezing	from	one	to	higher	dimensions	under	
a	global	‘rootward’	gradient	

•  In	syntax,	we	have	another	mapping	between	a	one-
dimensional	object	(the	surface	form,	a	string	of	
words),	and	a	higher-dimensional	object	(the	
branching	syntacWc	structure).	

•  I	believe	there	is	a	global	gradient	here	as	well,	
effecWvely	‘pulling’	elements	toward	the	root	of	the	
syntacWc	tree	(“economy	of	command”;	see	
Medeiros	2008,	forthcoming,	amounts	to	a	
preference	for	shallower	trees).	

•  And	a	kind	of	mutual	repulsion	as	well.	
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OpWmal	packing	of	consWtuents	

•  Suppose	(for	reasons	related	to	reducing	c-command	and	dominance	
totals)	that	it	is	desirable	to	‘fill’	the	available	binary-branching	space	
efficiently/densely	with	lexical	items.	

•  The	problem	is	not	straigh�orward:	if	we	imagine	the	structure	growing	
from	the	root	down,	there	are	two	desires	which	directly	conflict:		

(i)		place	lexical	items	as	close	to	the	root	as	possible,	

(ii)	but	leave	adequate	room	(branching	space)	for	further	growth.	
•  These	conflict	because	lexical	items	are	terminals;	they	‘close	off’	all	

further	growth	along	their	path.	
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Comparison	of	phrase	structural	
‘growth’	

Consider	some	of	the	opWons:	
•  If	one	gets	‘greedy’	and	places	two	lexical	items	right	below	

the	root	(locally	maximizing	the	density	of	terminals),	no	
further	growth	is	possible.	

•  If	one	places	one	terminal	beneath	each	branching	point,	
then	only	one	branch	is	available	for	further	growth;	a	uni-
branching	tree	(the	Spine)	results.	

•  This	is	only	a	good	soluWon	for	very	small	trees.	

•  If	one	‘delays	saWsfacWon’	and	pushes	terminals	even	
farther	down	the	tree,	more	room	for	growth	is	le}.	
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Goldilocks	growth	

The	Spine	(9a)	grows	too	fast,	choking	off	room	for	further	growth.	
3-Bar	(9c)	grows	too	slowly,	leaving	the	space	sparsely	populated.	
X-bar	(9b)	is	‘just	right’	(at	this	size	scale,	anyway).	
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Spine,	depth	1	
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Spine,	depth	2	
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Spine,	depth	3	
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Spine,	depth	4	
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Spine,	depth	5	
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X-bar,	depth	2	
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X-bar,	depth	3	
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X-bar,	depth	4	
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X-bar,	depth	5	
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X-bar,	depth	6	
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3-bar,	depth	3	
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3-bar,	depth	4	
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3-bar,	depth	5	
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3-bar,	depth	6	

146	3/10/2013	 146	



Global	pull/local	push	

•  The	sort	of	organizaWon	at	right						
represents	the	flavor	of	the	dynamic	
mini-max	compromise	-	it	eventually	
grows	more	heads	than	any	
arrangement	of	the	same	amount	of	
recursive	structure.	

•  To	globally	maximize	heads	--	to	pack	as	
many	as	possible	as	near	the	root	as	
possible	--	locally	heads	are	as	sparsely	
distributed	(deep	down/far	apart)	as	
possible.	

•  Perhaps	a	case	of	“dynamic	frustraWon”?	
(Binder,	Uriagereka)	
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PredicWon:	if	opWmal	packing	maUers	for	phrase	structure,	we	may	well	
expect	that	which	soluWon	is	chosen	might	change	as	the	tree	grows.	
If	syntax	proceeds	by	cycles	(e.g.	phases),	I	predict	something	like	the	
following	sequence	of	‘growth	modes’:	

That	is,	I	predict	that	the	‘boUom’	of	the	cycle	should	contain	only		
head-complement	structures	[X0	YP],	with	single-specifier	X-bar	
[ZP	[X0	YP]]	strcuture	above	that,	and	mulWple	specifiers,	if	found	
at	all,	only	at	the	highest	level	of	the	cycle.	
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Growth	mode	transiWons	

•  There	is	some	evidence	that	this	is	true:	
•  Pylkkänen	(2002),	following	Larson	(1988):	mulWple	v/VP	

arguments	are	not	‘piled	up’	within	the	lower	lexical	VP,	but	
are	introduced	one-at	a	Wme	in	individual		
Appl(icaWve)P(hrase)s.	

•  And	the	subject	is	‘severed’	from	the	verb,	e,g,	Kratzer	(1996)	
and	much	subsequent	work.	

•  Thus,	the	single-specifier	regime	reaches	down	as	low	as	the	
ApplPs,	but	perhaps	not	into	the	lowest	level	(VP,	which	
allows	just	a	complement).	

•  That	is	as	predicted:	we	have	the	Spine	at	the	boUom,	X-bar	
organizaWon	higher	up.	
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From	one	to	mulWple	specifiers	
What	about	the	other	half	of	the	predicWon,	that	mulWple	specifiers	(if	permiUed	at	

all)	are	restricted	to	the	‘top’	of	the	cycle?	
That	might	also	be	correct.		The	‘phase	edges’	have	been	held	to	allow	mulWple	

specifiers:	
•  vP	hosts	the	external	argument,	and	successive-cyclically	moving	whPs.	
•  CP	has	been	argued	to	allow	mulWple	specifiers,	in	light	of	‘mulWple-wh	

construcWons’:	
–  Ko				sta				gdje				kupuje?	

	Who	what	where	bought	
	“Who	bought	what	where?” 	(Serbo-CroaWan,	Stepanov	1997:	3)	

MulWple	specifiers	are	not	apparent	elsewhere.	
–  One	excepWon	(thx	Yosuke	Sato):	Japanese	‘mulWple	subject’	construcWons,	

analyzed	as	mulWple	specifiers	of	TP;	the	problem	is	that	TP	is	‘too	early’	for	
mulWple	specifiers.	Leaving	the	details	aside,	this	observaWon	falls	into	place	if	
Japanese	clauses	have	more	structure	due	to	massive	le}ward	movement,	as	
proposed	by	Kayne	(1994).	
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4	types	

•  One point to be made about the 4-type systems is that 
the competition is quite ‘messy’: 

•  The eventual winner (3-bar) doesn’t rise above the rest 
of the field until depth 20. 

•  For smaller structures, different organizations are optimal 
for small stretches of the intermediate range. 

•  Intuitive observation: it looks like those intermediate-best 
organizations (except the Spine of Spines of Spines) are 
formed by ‘mixing’ X-bar and 3-bar, or doubling/iterating 
some sub-portion of the X-bar pattern…	
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 These are the 4-
type systems 
graphed on the 
previous slides. 
 Intuitively, all but 
(K) look to be 
minimal variations 
on the X-bar 
shape, derived by 
stretching/splitting 
or doubling some 
node. Thus (14) 
replaces the X0 
node with a pair of 
such; (29) doubles 
the X-bar level, 
etc. 
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