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Part |

* Background
— 3" factor in biology
— Golden mathematics
— The Rabbit sequence



The study of complex systems seems to affirm the Thompson-
Turing claim that “some physical processes are of very general
occurrence.”

Notably, those involving Fibonacci-based “golden” forms,
ubiquitous in nature.

This lends immediate interest to the observation that the repeated
structural motif in the human syntactic system, the X-bar schema, is
likewise a “golden” form (Medeiros 2008),

and leads us to inquire whether whatever is behind the natural
ubiquity of such phenomena, in other domains, might possibly be
at work here as well.

If so, this peculiar aspect of human phrase structure would fall
under Chomsky’s (2005) “third factor”, a fact about language which
is neither encoded in the particulars of our genome, nor learned
from the environment, but determined by domain-general
principles beyond the organism.



“Golden” Mathematics

The Golden number (aka the golden ratio, the golden
section, the golden mean)

isx,suchthatx?—x—-1=0 x/(x+1)=1/x
1.6180339... a constant called Phi.
(or sometimes its reciprocal, 0.618... phi)

The Golden angle, associated with the dominant
spiral mode of phyllotaxis, is just phi measured out
on a circle.

Phi is the most irrational number.

Intimately linked with the Fibonacci sequence and
the Golden String (~Fibonacci word).



The “golden rule”

Fib #s, addition

S..2 =Shs1 ¥ S0 GoOlden String,
concatenation

an+2 = an+1+ an+0

x2=x1+x%  Polynomial giving Phi
xn+2 = x"*1 4 xn+0 (times Xn)

SO,,,=S0,,, +5S0_,, Golden syntactic
recurrence in X-bar format



Fib #:a,=a, ,+a,, 1,1,2,3,5,8,13...
Fib word: s, =s_, s,,1011010110110...

* The Fibonacci numbers, and the closely linked Fibonacci word
(aka Golden String) in particular, are important topics in the
study of symbolic dynamics, physics, theoretical computer
science, etc.

* These patterns have a number of ‘special’ mathematical
properties.

Fib #'s, addition: Fib words, concatenation:
1,1,2,3,5,8,13,... (0),1,10,101, 10110, 10110101,
e 1+1=2 0,1:10

e 1+2=3 1,10: 101

e 2+3=5 101, 10: 10110



Fibonacci L-erammar

1) 1
/\
1 0
T T~ | 1510
1 0 1 0->1
1 0 1 1 0
N N N |

1 0 1 1 0 1 0 1

 101101011011010110101101101011011010110
101101101011010110110101...

* http://personal.maths.surrey.ac.uk/ext/R.Knott/
Fibonacci/fibrab.qt
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The Golden String/Fibonacci Word/
Rabbit Sequence

This structure is a quasiperiodic binary sequence
whose long-range order reflects the mathematics of
the Fibonacci numbers.

By “quasiperiodic”, we mean that it never exactly
repeats (such sequences are merely periodic), but
neither is it random. In fact it is self-similar.

Its linear organization reflects hierarchical groupings of
the kind indicated in the tree above.

This structure is reflected in many places in nature,
from the organization of spin glasses (Binder 2008), to
the oscillations of multiperiod variable stars including
UW Herculis (Escudero 2003).



Self-generating procedure for the Golden String
{examine the value at a pointer.

If val=1, append 10 to the end of the string.

If val=0, append 1 to the end of the string.
{ Move the pointer one space right.
Repeat.

— Begin with just the first two digits of the GS (10), with pointer on the
second digit (0, underlined and bolded):

10

— The pointer is at 0, so we add 1 to the end and move the pointer.

101

— Now the pointer is on 1; we add 10 and move the pointer.

10110

— And so on:

1011010, 10110101, 1011010110, 10110101101,
1011010110110, etc.



The Golden string encodes its own computation

* The Golden String has a fascinating property of ‘vertical’ self-
similarity at many scales.

The sequence encodes the very procedure used to compute
the sequence...

|dea: perhaps this is significant in light of the double
articulation of language noted since antiquity: its dual life as a
linear outer form and a hierarchically structured inner form
(strings and trees, basically).

This object, in a sense, brings its own double articulation with

it; the projection of a syntactic form from its sequence is
inherently already there.

In other word: there’s already a tree in this string.



Part |

* Fibonacci/golden properties in Nature
— Phyllotaxis
— Brain
— Penrose Quasicrystals



Intriguing cases of “golden” structure:

 The deep robustness of Fibonacci-based organization in
phyllotaxis (across > 90% of plant species, Jean 1994)

* This pattern is known to “arise from self-organization in an
iterative process [...] the ordering is explained as due to the
system’s trend to avoid rational (periodic) organization, thus
leading to a convergence towards the golden mean.” Douady
& Couder 1992

 Asymmetry in mammalian bronchial structure "consistent
with a process of morphogenetic self-similarity described by

Fibonacci scaling"” (Goldberger, West, Dresselhaus, Bhargava
1985)



1,1, 2,3,5,8, 13, 21, 34...
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* As Douady and Couder (1992, 1996) showed, the familiar Fib-
spiraling arrangements in phyllotaxis can be explained by purely
physical self-organization at the shoot apical meristem.

 They reproduced identical patterns with mutually repelling droplets
of ferro-fluid; in essence, if the droplets fall into the center of the
dish fast enough to be repelled by more than one previous drop,
the Fibonacci organization is virtually inevitable.

* Computer simulations reveal the same pattern emerges robustly
even if the repulsion forces scale differently with distance (i.e.,
under different laws of physics).
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Golden frequency ratios in the brain

Evidence that golden mathematics plays a special role on the
“hardware” side of cognition:

Roopun et al. (2008), “Temporal interactions between cortical rhythms”:

“The modal peak frequencies fall into distinct bands, with
approximately twice as many bands as expected from a
natural log distribution. Instead, the bands appear
approximately distributed according to ‘phi’ (the ‘golden
mean’) rather than ‘e’ — a constant commonly associated with
the organisation of complex natural systems (Atela et al.,
2002).”

“[...] in using phi as a common ratio between adjacent
frequencies in the EEG spectrum (Figure 1), the neocortex
appears to have found a way to pack as many, minimally
interfering frequency bands as possible into the available
frequency space.”



Golden quasicrystals

A class of crystals with Bragg diffraction showing forbidden (e.g. five-fold)
symmetry has been successfully modeled in terms of 3-dimensional
Penrose tilings. Although Penrose constructed his tilings with two or more
shapes with intricate edge-matching rules, it has been shown that the
same geometry can be achieved through uniform, overlapping decagonal
tiles.

“[A] quasiperiodic tiling can be forced using only a single type of tile, and
furthermore we show that matching rules can be discarded. Instead,
maximizing the density of a chosen cluster of tiles suffices to produce a
guasiperiodic tiling. If one imagines the tile cluster to represent some
energetically preferred atomic cluster, then minimizing the free energy
would naturally maximize the cluster density.” (Steinhardt & Jeong 1996:
431)



“A new picture of quasicrystals emerges in which the structure is determined entirely by a single
repeating cluster which overlaps (shares atoms with) neighbor clusters according to simple
energetics.” Gummelt(1996).

“Figure 3: Superposition of a perfect decagon tiling on the high angle annular dark-field (HAADF)
lattice image of water-quenched Al,,Ni,,Coz obtained by the high angle annular dark field
method by Saitoh et al.”
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Part |l

 What are grammars?
e Saddy’s results



“Where do grammars come from?”

* This was the question posed in Doug Saddy’s
talk here in Spring 2012.

* He presented intriguing experimental results
suggesting that the so-called Fibonacci L-
grammar “entrains the brain” in a special way,
more so than any other kind of long-range
order he examined.



Saddy’s results

In experiments by J Douglas Saddy and his group at the
Centre for Integrative Neuroscience and Neurodynamics,

He played subjects a long stretch of this Fibonacci grammar
sequence, as a string of ba/bi syllables:

— ba bi ba ba bi ba bi ba ba bi ba ba bi...

As well as other sequences, like the Thue Morse (1 2 01; 0
— 10) and Feigenbaum (1-> 10, 0 = 11) grammars

Then had subjects decide which of two short samples
played subsequently best matched what they had heard
before.

Subjects recognized the Fibonacci sequence more
accurately than any other.



More than just a sequence...

 He also tested the Fibonacci and other
grammars against “pseudo-clones”,

 Composed of “legal” substrings, assembled
legally, but with a randomized long-range
order.

* Again Fibonacci fared best; remarkably,

subjects could tell it apart from even
sequences built from 5- or 8-bit long
substrings of it (10110 & 10110101).



Remarkable

* This is a remarkable fact; the long-range order of
the sequence is strictly beyond the capabilities of
finite-state (Markovian) processes to describe.

* Even more stunning: in computer science, the
Fibonacci word is known to be the worst case for
the application of many efficient pattern
recognition algorithms (Knuth, Morris, & Pratt
1977, Aho 1990, a.o.).

 Whatever the reason for subjects recognizing this

string best, it seems it’s not about local statistical
regularities (e.g., recognizing n-grams).



Saddy’s conclusions

eSafe conclusion: Humans can detect and discriminate domains of
self-embedding in recursive strings.

e Prudent conclusion: Investigating the correspondence between
cortical activity and the ability to recognise and manipulate
structure hidden in recursive signals may point to common
mechanisms underlying complex cognitive processes.

eBold conclusion: The physical conditions which yield the L-system
governed patterns in sunflowers and brain morphology appear to
also govern aspects of optimal neural signal properties involved in
information processing.

eBinky’s conclusion: Some of the defining properties of human
grammars follow from physical principles governing certain
attributes of a system — they reflect a natural law.
(Saddy 2012: 58)



Where to go from here?

* To test the hypothesis that the spectral

properties of the Fibonacci/X-bar grammar are
what make it “special”

 The idea is to test how subjects perform with
distinct sequences/grammars with some but
not all of its special spectral properties.

* This requires a jump to ternary strings (over
an alphabet O, 1, 2), the first place where
these properties can be dissociated.



Tribonacci

This grammar is Endocentric and of Pisot type, but not Polygonal.
2221
1220
022

212021221202121202122120212021221202121202122120212212
021212021221202120212212021212021221202121202122120212
021221202121202122120212212021212021221202120212212021
212021221202120212212021212021221202122120212120212212
021202122120212120212212021212021221202120212212021212
021221202122120212120212212021202122120212120212212021
221202121202122120212021221202121202122120212120212212

021202122120...



Heptagon

This grammar is Polygonal, but neither Endocentric nor Pisot.
2221
1->02
0—>1

210212102210212121021210221022102121022102121210212121
021210221021212102121022102210212102210221021210221021
212102121022102210212102210212121021212102121022102121
210212121021210221021212102121022102210212102210212121
021212102121022102121210212102210221021210221022102121
022102121210212102210221021210221022102121022102121210
212102210221021210221021212102121210212102210212121021

210221022102



Pisot # 1.46557...

This grammar is of Pisot type, but is neither Endocentric nor Polygonal.
2221
1->0
022

210221210210221022121022121021022121021022102212102102
210221210221210210221022121022121021022121021022102212
102212102102212102102210221210210221022121022121021022
121021022102212102102210221210221210210221022121022121
021022121021022102212102102210221210221210210221022121
022121021022121021022102212102212102102212102102210221
210210221022121022121021022102212102212102102212102102
210221210221



Part |V

e The X-bar schema



The X-bar schema.

Of all the ways that syntactic structure could be built up, one particular ‘growth
solution’ seems to dominate in natural language.

This is the so-called X-bar schema:
XP = [ZP [X° YP]]

In words: a phrase of any type (a verb phrase, noun phrase, whatever, thus an
XP(hrase)) is built around a head (X°), with asymmetrically arranged ‘slots’ for
two additional phrases of the same shape.

NP = [The barbarians’ [destruction [of Rome]]
Sentence = [The barbarians [destroyed [Rome]].
The phrasal off-branches (YP, ZP) may be expanded indefinitely:

[The ravening hordes of barbarians] [destroyed [the gleaming city on the hill]],
and so on.



A none-too-innocently-chosen
example

e As anillustration of one kind of pattern of recurrence,
consider the familiar “X-bar schema” (Chomsky 1970,

Jackendoff 1977). <p

N
ZP X’

............ N vp
Head Complement

* Thisis a “recipe” for structure building: to build a
phrase (XP), combine a terminal (X°) with a phrase (YP),
then combine the result (X’) with another phrase (ZP).



Background: [Spec [Hd Comp]]

Since Chomsky (1970), it is widely held that the syntactic structures of natural
language are constructed around the ‘X-bar molecule’ shown below:

XP
/P X’
X0 YP

The claim is that one finds phrases (XPs) of only the following shapes:
a. XP=XY
b. XP=[X°YP]
c. XP=[ZP[X°YP]]

One does not find ‘exocentric’ phrases such as
*XP=[YP ZP] (contra Starke 2004)

Nor phrases with more than a single complement and specifier:
*XP=[WP[ZP[X°YP]]] (contra Chomsky 1995a)

Nor phrases in which the head (X°) is not at the ‘bottom’:
*XP = [X°[YP ZP]] (but see Moro 2000, Pereltsvaig 2006, below)



The Golden Phrase

| suggest that we should add to the family of
related “golden” mathematical objects (the
golden number/section/mean; the golden
angle, the golden string)

The “Golden Phrase”, i.e. the X-bar schema.

In essence, this phrasal shape is the

expression, in binary-branching syntactic
trees, of the very same Fibonacci theme.

This kind of phrasal organization has a number
of “special” properties...



The Golden Phrase is special

* In what follows, | will point to three considerations
which pick out this kind of phrase structure as
special:

— (1) The X-bar schema is the simplest kind of
syntactic (multi-)fractal.

— (2) The X-bar schema is the minimal semantic

generator, the first shape to unlock the full set of
predicate-argument meanings.

— (3) X-bar grammar, with specifier-head-
complement order, yields strings related to the
Golden String (infinite Fibonacci word); it has the

lowest ambiguity among “binary generators of
binary”.



“Arguably, this configurational schema, known as X-bar
theory, is the only kind of structure that syntactic
representations exploit. Other structural options, such
as adjuncts to phrases, multiple specifiers of a single
head, etc., have been experimented with in various
ways but Cartographic research has, for the most part,
eschewed these options, retaining only the core
structures afforded by the X-bar schema. Indeed,
Cinque (1999) argues forcefully against the adjunction
of adverbials|...] The core structural relations defined
by X-bar theory seem to be not only necessary, but
sufficient to characterize syntactic structure.”

(Shlonsky 2010: 2; emphasis added - DPM)



The second step consisted in the recognition that the various classes of adverbs (more accurately, AdvPs) are also
ordered among each other in a syntactic hierarchy, and that this hierarchy turns out to match exactly the hierarchy of
Mood, Tense, Modality, Aspect and Voice heads, as can be seen if we juxtapose the two hierarchies:

(7) a MOOdspeech act b AdVPspeech act (ffankly,--)

Moodeyaiuative AdVP,yauative (fortunately,..)
Moodeyidental AdVPe.idential (allegedly,..)
Modepistemic AdVP epistemic (probably,..)
Tensepasyfuture AdVP pasyiuture (then,..)
Mod necessity AdVP e cessity (necessarily,..)
MOdpossibility AdVPpossibility (possibly,..)
AspeCthabltual AdVPhabitual (usually,..)
Aspect epetitive AdVP e etitive (again,..
Aspectirequentative AdVPsrequentative (frequently,..)
Modyoition AdVP o (Willingly,..)
Aspecteierative AdVP celerative (quickly,..)
Tenseanterior AdVP anterior (already)
Aspectierminative AdVP e minative (NO longer,..)
AspeCtoontinuative AdVPoonﬁnuaﬁve (St|",)
Aspect ontinuous AdVPontinuous (alwWays,..)
ASpeCtretrospective Advpretrospecﬁve (jUSt,..)
ASpeCtdurative AdVP 4yrative (brieﬂy,..)
Aspectorospective AdVProspective (imminently,..)
Mod,piigation AdVP gigation (Obligatorily,..)
Aspectiystrative AdVPsrstrative (i vain,..)
Aspectompletve AdVP compietive (partially,..)

3/10/2013 Verb
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Why is language that way?
This structure might follow from

(1) XP L .
—— more general principles. It 1s
ZP X suggestive that the X-bar pattern
w generates the Fibonacci numbers,
X YP  which arise in many natural systems.
X X X
AP 1 0 0
BP A’ 1 1 0
CP B’ : DP 2 1 1
EP C B FP GP D 3 2 1
NN A NN\
HP E C’ IP JP KP G D’ ILP 3 3 2

3/10/2013

Fibonacci #s: 1.1.2.3.5.8,13...



Consider how X-bar analyses may be assigned to strings (where an XP can be
expanded as X0, [X0 YP], [ZP [X0 YP]]).

For each string length, there are a number of X-bar branching
structures that could underlie it:

ABCD: [A [B [C [D]]]], [[AB][CD]], etc.

For a given string length, there is a minimal depth any X-bar analysis
must have. E.g., string length 3 requires depth 2, as does 4; once you get
to 5, you need a tree that has depth 3.

Fibonacci string lengths are special, in that they are the first length to push
the required tree-depth one deeper (thus, 6- and 7-long strings also ‘fit’
in depth 3 trees; 8 is the first length to necessarily push the tree 4 deep) .
Below: 13-long string (ABCDEFGHIJKLM), forcing depth-5 X-bar analysis.

HP?
EP W
- --_--_h"‘-hhh ___,-'ﬂ---
P E* H* EFP
AP (i E- FP ] & K
A BY ¢ | F LI T K" LP
.--"'FH'““H-H



* http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibrab.qgt

\

(1)L s 1 1 s 1 s 11 s 1 1L s 1 s 1 1 s 1 s 1
(2)S ¢ ¢ S ¢ S ¢c cS ¢cc S¢S cc S c S c c

(1) 15118181151151511s151
(2) -SccScSccSccScSccScScc
(3) 101101011011010110101

3/10/2013
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(1) ILsllslsllsllslsllslsl
(2) —SccScScacScacSacScacSacScc
( 3) 1110111110111 0901091

So: the sequences of large/small open categories on the
bottom ‘frontier’ of the partial expansion of the maximal X-
bar tree follow the golden sequence exactly.

...in fact, are successive Fibonacci length portions of that
object.

The classification of those open categories as specifiers or
complements is a slightly different pattern.

The spec/comp sequence also follows the golden string
pattern, but starts at index 2.

Likewise, if one examines the sequence of head positions,
marked for whether they are introduced in the last generation
(bottom line of the tree) or not, one also finds the GS starting
at index 2.



e According to Chomsky & Halle (1968) (see also Bresnan 1971,
1972, Cinque 1993)

 The deepest part of a syntactic tree gets maximal stress
(Nuclear Stress Rule)...

 Reading sequence of stress maxima (black heads) and non-

maxima (grey heads) from left to right in an idealized X-bar
tree expanded to uniform depth, we get the Fibonacci word:

5501 1 01 011 01 1 01 01 1 01 0

3/10/2013 42



X-bar form without labels

e A traditional way to describe this particular pattern is with
phrase structure rules (PSRs), as below:

XP 2> ZP X’ XP
X' > XOYP ZP/\X,
* |gnoring labels, we can write this as: Specifier — ™~
XP 2 XPX X' YP
X' > XOXP Head Complement

* Or, even more simply and abstractly, using Os to represent
terminals, and higher numbers (1, 2) to represent distinct
kinds of non-terminals:

2 > 21 K&
1 502 .



Bare recursion

e Of course, the X-bar schema is more than just a
structure-building pattern; it also incorporates
the further notion of labeling or headedness.

* In what follows, | ignore this aspect, considering
only the recurrence pattern.

* On this view, the X-bar schema resolves as a
simpler object that can be depicted as below:



X-bar pattern as matrix

4 Rows and columns are
XPout X" out associated with the kinds of

l l non-terminals.

Rows can be thought of as
inputs to phrase structure

XPin | 11 rules
Columns are the outputs.

— | 0 Only non-terminals are

X’ i represented, and we ignore
In linear order.

<%




Let’s make that clearer:

XP out X’ out This representation doesn’t
l record linear order.

l Terminals are expressed only
indirectly here.

A non-terminal introduces a

XP n 1 1 terminal if its associated
N
row sums to less than 2.

— 1 0 E.g. the second type of non-
| terminal (X’) introduces a
single terminal because its
row adds up to 1; the first
(XP) row sums to 2,
indicating it immediately
dominates no terminals.




Part V

* Expressive Power

e The X-bar schema is the “minimal semantic
generator”



X-bar schema and semantic expressive
power

There is another reason to think that the X-bar form is “special”
Related to its expressive power when mapped to semantic interpretation.
The X-bar schema is the minimal semantic generator.

In the sense that predications of any internal structure, stated with
predicates of arbitrary adicity,

Can be expressed in a X-bar syntactic form (utilizing the syntactic
equivalent of Schoenfinkelization/Currying).

But no simpler form will do.

In other words, the X-bar schema is just right: just big enough to get the
job done (i.e. to express any kind of predication) -- having a larger phrasal
shape doesn’t buy you any additional expressive power.



Bicomplex predication

* Note the following about predicate-argument
structure in natural language:

e Both predicates and arguments may contain further
predicate-argument structure:

Simple: [arg The people] [p,q know].

Complex Arg: [, The people [, you] [esmett] ]
preq KNOW].

Complex Pred: [, The people]

prog KNOW [, you] [, exist t] ].
Bi—CompIex: :Arg The people [arg YOUI [preq Met t] ]

:Pred know [arg YOU] [preqg EXiSt t] ]



SYNTAX:

SEMANTICS:

Argument

N

Predication ~ f(x) =y

~X |Predicate| ~ f

| adopt the minimal notion of compositionality depicted above.

Bicomplexity in semantic composition requires bicomplex syntax.

Bicomplex syntax: two(+) growth points per molecule.

So, at least as complex as X-bar (or D-bar?).

Predication

Arg

Pred

f(x) =y

X f

3/10/2013
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(A)Symmetry, Fractal Semantics?

Conceivably, the structural asymmetry inherent in the dominant X-bar
form is “recruited” for the semantic asymmetry between predicates and
arguments.

Making it more useful, in a sense: not only do you get bicomplex
semantics, you get asymmetric bicomplexity, a basis for Fregean semantic
asymmetry.

A crucial case here is the structure of the copula, argued to be this (Moro
2000, Pereltsvaig 2006):

[cop [« XP YP]]

This is a (partial) manifestation of X-bar’s obscure é
sibling, the apparently rare D-bar configuration.

Crucial property: symmetry between the two objects combin h
growth points in the phrasal shape).

Here, we have a symmetric syntactic form just where we need it to
construct a symmetric meaning (equation).



Part VI

Fractals

X-bar schema is the simplest syntactic schema
generating a line fractal

In fact a multi-fractal
With “golden” Hausdorff dimension



Next: Fractals & the Cantor Set

Fractals are self-similar objects of non-whole-number dimension;
their “size” depends on the scale at which they are measured.

The Cantor set is formed from a line segment, by removing the
middle third, then middle thirds of the remainders...

This is the simplest fractal:
Background dimension cannot be lower than a 1-dimensional line.
Division in thirds is the first scheme yielding a fractal.

The self-similarity here invites a kind of phrasal analysis: within

each “generation”, there are two copies of the whole, and one
“dead end” (deleted segment ~terminal):



X-bar schema as (multi)fractal

* Consider mapping the X-bar (3) XPp
schema to a line segment,

>

* Such that binary branching in 7P : X’
the syntactic form i /\
corresponds to geometric i X0 i YP
halving, | |

e And heads/terminals <4“—7p—» X0 '¢YpPP

corresponding to deleting a
line segment. MM

0 Yo Yo o % 1




And so on: fractal structure

 Of course, ZP and YP
themselves have the same
internal structure as XP:

e Continued indefinitely, this
produces an asymmetric (or
two scale) Cantor set.

 Each generation has one %
and one % scale copy of the
whole.

< XP >
4+“— 72p—» X0 <Yyp»
Z9 ) e




Asymmetric Cantor set ~ X-bar tiling

As a fractal, this has a number of properties worth mentioning.

It is the simplest kind of syntactic fractal; i.e. it is the smallest
kind of self-similar binary-branching object whose non-
terminal image on the line is neither the full line, nor a single
point.

Its (Hausdorff) dimension is log,(Phi) ~.694

It is actually a multi-fractal (each unit of structure contains two
copies of the whole, at different scales (2 & %).

— -—-4 x;
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Part VII

* Binary generators of binary

* Specifier-head-complement linearization of X-
bar is in the set of such with lowest static

ambiguity.
 And may have lowest dynamic ambiguity.



Conditions for a “language-like” phrase structure system.
Binary alphabet; 1 2 xy,0 2 zw; x,y,zwin {0, 1, *}

A: Termination. At least one of X, y, z, w is terminal (/null). Thinking of these
systems as a (highly abstract!) basis for something like language, we want them to
be discrete, built around lexical atoms. Thus, at least one branch in the system must
introduce a terminal.

_. At least one of x..wis 1, and at least one is 0. In other words, each
non-terminal occurs an infinite number of times as the tree is infinitely expanded.

BEEEEE. 1 > ...0...and/or 0 © 1. Along the same lines as the above
condition, we want to ensure that there are not two disjoint loops, with 1s only
occurring under other 1s, Os only occurring as descendants of 0s. If that were true,
since there will only be one start symbol, one or the other loop will never be
introduced, hence is spurious.

D.? Bi-complexity. Not both 1 =2 ..*...and 0 = ...*... We probably also want to rule
out things that are unary-branching; it seems they can have absolute recoverability
(at least if they are not just unary, but unidirectionally, branching), but they clearly
lack the ‘semantic power’ of something like X-bar. For instance, they allow no
mapping of constituents to predicate/argument structure such that both predicates
and arguments can each contain further predicate/argument pairs. For the same

reason, we will rule out systems including arule 0/1 = * *, since that will produce a
‘doubleheaded spine’. 58



The table below is all conceivable binary phrase  what’s so special about
structure systems; those ruled out as this one, the Fibonacci

“unreasonable” are color-coded for the condition  grammar associated
with Spec-Head-Comp

they violate. boar?
0:01 -0:10 0:11 0:1* -0:*1 -
1: 00 1: 00 1: 00 1: 00 1: 00
0:01 0:0* 0:10 0:11 0:1%* 0:*0 0:*1 e
1:01 1:01 1:01 1:01 1:01 1: 01 1:01 :
0:01 -0:10 0:11 0:1%
1: 0 * 1:0* 1:0* ER0
0:01 0:0* 0:10 0:11 0:1%*
1:10 1:10 1:10 1:10 1:10
0:01 0:10
1:11 1:11
0:01 0:10
1:1% N
0:01 0:10
1:*0 =50
0:01 0:10
1:*1 1t |
0:01 0:10
1:** 1:**




Static ambiguity of binary generators of binary understood as
term-rewriting systems

In terms of ambiguity of complete output strings (with * null), X-bar as
understood above is one of 16 possibilities of its ‘size’ (the others are
alternative linearizations of X-bar and the other ‘reasonable’ 3-type
systems).

In that group, the possibilities fall into three equivalence classes:

The class containing the GS/X-bar form has the lowest ambiguity for the
cases I've worked out: for a string length n, there are two unambiguous
strings, two maximally ambiguous (full Catalan number of analyses)
strings, and some number of intermediately-ambiguous strings.

Another class (D-bar) accepts every string of a given length, and assigns
the full Catalan number of analyses to each.

The third class (Spine of Spines) accepts only a single string of each length,
but assigns an infinite number of possible analyses to it.



Why SHC?

Mirror order linearization (comp-head-specifier, CHS) of X-bar
structures would yield strings which are backwards portions of the
Golden String; thus SHC X-bar and CHS X-bar have equivalent
structural ambiguity in a static sense, over complete strings.

But SHC X-bar is more useful for dynamic recovery of structure from
strings.

It is easier to compare an incoming sequence, bit-by-bit against a
known standard, from an invariant beginning up to a variable

ending (as for SHC X-bar), rather than from variable ending
backwards to invariant beginning (as for mirror-order CHS X-bar).

On the other hand, ‘mixed’ X-bar linearizations (SCH, HCS) would
fail to form the relevant golden sequence.



Length 3
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Length 4
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Left: strings
accepted by
Fibonacci
grammar 1->
10,0 =2 1 (~X-
bar), and
analyses
assigned to
each; lengths 3
and 4.
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D-bar as term-rewriting system: full Catalan ambiguity.
1200

0->1 I

This grammatical system accepts any binary string, and assigns the full Cataln
number of possible analyses to each.

ggggthk\ e 2501 |01
Z‘:) ﬁ :;\\ 1522 [2(]0
NN

AN A
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Part VIII

e Catalogue of discrete infinite phrasal patterns



Discrete infinity

It is an old insight that natural language is a
system of “discrete infinity”

4

von Humboldt’s “infinite use of finite means’

The finite means being discrete atomic
elements: words, morphemes, features.

And infinite use implicating recursion.



Studying discrete infinity

* |n what follows, | report some results obtained
from a study of generalized discrete infinity.

e | examine the distinct binary-branching (Kayne
1984, 1994) recurrence patterns that could form
the basis for discrete infinity.

— i.e., self-similar arrangements of terminals and non-
terminals

— Terminals being the “discrete” part, non-terminals the
“infinite” part.
* Goal: describe and classify the possibilities and
their properties.



Alternative phrasal arrangements...

 What follows is concerned with showing that the X-
bar schema has a lot to recommend it, when
compared against other ways that phrases might be
assembled.

 We'll therefore need to consider what else is possible
-- what else could phrases look like?
— Take phrases to be recursive ‘recipes’ for structure
building.
— Assume binary branching (Kayne 1984).

— Phrases enable discrete infinity; concretely, they contain
terminals, and non-terminals.



Maximal expansion: L-system
treatment

| will investigate the properties of different patterns by idealizing
them as rigid local tree-building schemata,

And seeing what happens when they are expanded maximally.

This amounts to treating them as Lindenmayer (L-) systems,
pioneered by Lindenmayer (1968) to investigate plant growth
“algorithmic botany”.

L-systems are like familiar PSGs, but all rewrite rules apply
obligatorily and simultaneously.

| will consider patterns that are rigidly uniform (corresponding to
deterministic context free (DOL) systems).

There is a rich literature on this, much of it irrelevant to my work —
largely because | ignore linear order, and much work on L-systems is
concerned with words and word sequences.



Next: cataloguing the possibilities

* With this in hand, let’s turn to cataloguing the
various possibilities for discrete infinite
patterning.

* The possibilities are naturally partitioned by
the number of non-terminal types they are
defined over.

* The simplest class has a single non-terminal.



Simplest ‘molecule’ of structure: one level of
embedding.

If we restrict possibilities to a single layer of syntactic
combination, only one shape yields discrete infinity:

 The Spine, Phrase = [terminal Phrase].

1201 /;

The other naive possibilities,

 Phrase = [Phrase Phrase] /<>\

1211

* or Phrase = [terminal terminal],
00 o

obviously could not serve as bases for a language-like system.




One non-terminal

* There is really only one discrete
infinite pattern with one non-
terminal type: the Spine, below.

* The Pair (above right) is discrete
but not infinite; the Bush (below
right) is infinite but not discrete.

The Spine
PSR Matrix Tree

1>01 |1 ] &

Characteristic polynomial: x — 1
Growth factor: 1

3/10/2013

The Pair
PSR Matrix Tree
1500 [0] ./\.

Characteristic polynomial: x — 0
Growth factor: 0

The Bush
PSR Matrix Tree

s 2] A X

Characteristic polynomial: x — 2
Growth factor: 2

71



Two non-terminals

* D-bar and X-bar have “high-headed”
variants -- really the same recurrence
pattern, oriented differently with
respect to the root.

(41) X-bar
PSRs: Matrix:

2921 [11

1202 |10
Characteristic polynomial: x2 — x — 1 ®
Growth factor: @~1.618

(42) High-headed X-bar
PSRs: Matrix:
22> 01 01
1212 1 L]

Characteristic polynomial: x> — x — 1
Growth factor: @~1.618

3/10/2013

e Again, the matrix formulation allows
us to express this nicely; the related
patterns have similar matrices, in the
algebraic sense.

(43) D-bar
PSRs: Matrix:

2>11 [o2
1202 |10

Characteristic polynomial: x? — 2
Growth factor: V2 ~1414 [ J ®

(44) High-headed D-bar

PSRs:
22> 01 01
| . 20

Characteristic polynomial: x? — 2
Growth factor: vV2~1414

72



System Tree

Matrix

Recurrence relation Growth Factor

ore ¢\ L]
X-bar K&

D-bar

Spine of
Spines

3-bar

O
o

1 1]
10

1 1 07
101

100

a,=a,q 1

a,=a ,+a_, Phi~1.618

a,= 2a., V2~ 1.414

n

? (complicated) 1

a,=a,+ta ,+ta_ 5 ~1.839
“Tribonacci constant”



Finally, brief survey of 3 non-terminals

* Moving up the scale of pattern complexity, the
next class (built with three kinds of non-

terminal) has 57 distinct members.

* |In the next slides, | illustrate just a few of
these.



Further 3-type systems

Here are some more examples from this class:

(57) 2_Power of 3 ) ] ]
(66) K Spine of Spines of Spines

3212 11
2203 100 3->23 110
1—)33 200 2-->12 011

1->011001
Characteristic polynomial: x3-3x=0 [ ]
Growth factor: V3=1.732.. Characteristic polynomial: x3 —3x?+ 3x — 1
Growth factor: 1
(63) 39 (62) 29
3->23[110 3->23[1L0J
1 2 n 2-->111002
2->131101 U

Characteristic polynomial: x3-x?-2
Cha;actenstlc polynomial: x*-—-xZ2-2x+1 Crowth Factor: 1.6956... .
Gro actor: 1.8019..



Prime growth factors by class

# Non-terminals Values
1:  (2),1,(0)

In this simplest kind of phrasal patterning, there is only one option, the
Spine, with growth factor 1. | include in parentheses the “illegitimate”
Bush, with growth factor 2, and Pair, with growth factor O.

2: 1.61803, 1.41421

With 2 non-terminals, we find two “prime” growth values, associated with
the X-bar and D-bar families. | do not list again growth factors for
“composite” systems like the Spine of Spines, as they are drawn from
lower classes (in this case, the Spine of Spines has growth factor 1).

3: 1.83929,1.80194, 1.76929, 1.75488, 1.73205, 1.69562 (*2), 1.58740,
1.52138, 1.46557, 1.32472, 1.25992

These are the “new” growth values from the class beyond X-bar, including
3-bar (with the largest growth value, the tribonacci constant). Note that
two distinct families of patterns have the same growth value (1.69562).



Growth factors with 3 non-terminals

Systems in family | Polynomial Growth factor Special notes

7,32, 34 x3 -2 1.2599 3V2, non-Pisot

13, 25, 35 x—-x-1 1.3247 Plastic number rho,
the smallest Pisot #2°

22,28, 33 X —x2—1 1.4656 Pisot #

1,31, 41 X—-x-2 1.5214 Non-Pisot

5, 30, 37 x’—4 1.5874

3, 20, 29 X —x2-2 1.6956 Non-Pisot

4, 18,27 X3 —x2-2 1.6956 s

2, 38,40 X’ —3x 1.7321 V3, Non-Pisot

17, 19, 26 x> —-2x+x-1 1.7548 Pisot #; plastic
number rho squared

6,12, 24 X’ —-2x-2 1.7693 Non-pisot #

11, 16, 39 X —-x2-2x+1 1.8019 Non-Pisot, three
distinct real roots

9, 10, 21 X —-x2-x-1 1.8393 Pisot #, the

“tribonacci” constant

3/10/2013
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Growth factors for prime systems over

4 non-terminals

4: 1.92756,1.92129, 1.91439, 1.90517, 1.89932, 1.89718, 1.89329,
1.88721, 1.88320, 1.87939*, 1.87371, 1.87018, 1.86676, 1.86371,
1.85356, 1.85163, 1.84776, 1.83509, 1.82462, 1.82105, 1.81917, 1.81712,
1.80843, 1.79891, 1.79632, 1.79431%*, 1.79004, 1.78537, 1.74840,
1.74553,1.72775,1.72534, 1.72208, 1.71667, 1.71064, 1.70211, 1.69028,
1.68377,1.68179, 1.67170, 1.66980, 1.65440, 1.65289, 1.64293, 1.60049,
1.56638, 1.55898, 1.55377, 1.54369, 1.51288, 1.49453, 1.49022, 1.44225,
1.39534, 1.38028, 1.35321, 1.27202, 1.22074, 1.18921

[59 distinct]

These are the new “prime” growth factors from the set of phrasal patterns
with 4 non-terminal types. Collecting them allows a check on whether the
set of systems has been fully reduced (eliminating redundancies and
degeneracies); “prime” values should appear in a number of systems that
is @ multiple of 4 (cf remarks above on the “doubled” value 1.69562 in the
three-types set, appearing in two distinct families; it shows up with 6
systems rather than 3, as for the other values).



Count: all the prime systems below occur in multiples of four; only those multiply
+ represented are marked as such (x8 or x12).

Eigenvalue (growth factor) | Polynomial(s) Count/notes
1.92756 xt-x3-x2-x-1 Pisot, limit point
1.92129 x-x3-x2-2x+1
° 1.91439 xi-x3-2x%+x-1
* | 1.90517 xi-x3-2x2+1 Pisot; “the smallest limit point
of the set of ynivoque Pisot
numbers”
x8
1.89932 xi-2x2-2x-2 non-uniformly discrete
spectrum
1.89718 x-2x3+x2-x~-1
1.89329 x4-2x2-3x
1.88721 x-3x2-2
1.88320 x4-2x3+x2-2x+1 Salem
1.87939 xt-x3-3x2+2x+1 This yalue — the 9-gon
& system — is the only one in
x4-3x2-x this class with two distinct
polynomial representations.
x8
1.87371 xt-x3-2x-2 x8: non-uniformly discrete
spectrum
1.87018 x*-3x2-2x+2
1.86676 x*-2x3+x-1 Pisot, limit point. x12

3/10/2013
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1.86371 Xt-x3-3x
1.85356 Xt-x3-x2-2 x8
1.85163 Xt-x3-4x+2

¢ |‘ 1.84776 x*-4x2+2 (octagon system)
1.83509 )
1.82462 g-x3-2x2+2x-2 x8
1.82105 xt-x3-x2-2x+2 x8
1.81917 Xx*+-3x3+3x2-x~1
1.81712 +-6x
1.80843 ﬁ-xhsx-z
1.79891 xi-2x2-4 x8
1.79632 Xt-x2-4x X8
1.79431 x4-x3-2x-1
1.79004 x4-2x3+x2-2 x12
1.78537 Xt-2x2-x-2
1.74840 t_x3-4
1.74553 g-xz-Bx-l i
1.72775 Xt-4x-2
1.72534 x4-x3-x-2 x8

3/10/2013
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1.72208 xt-x3-x2-x+1 Salem number
1.71667 x*-2x3+2x-2
1.71064 x4-2x2-x-1
1.70211 x}-3x2-x+2
1.69028 x}-x3-2x2+2x-1
1.68377 xi-2x2-2x+1
1.68179 x*-8

o |[T67170 x*-x2-3x x8
1.66980 x}-x3-x2+x-2 x8
1.65440 x-x3-3x+2
1.65289 x4-2x2-2 x8
1.64293 xt-2x-4 x8
1.60049 xt-x2-4
1.56638 x}-x2-x-2
1.55898 x-x3-2x+1
1.55377 xi-2x2-1
1.54369 xt-x3-2 x12
1.51288 x-x3-x2+x-1 x8
1.49453 x4-2x-2 x8
1.49022 x3-2x2-x+1
1.44225 x*-3x
1.39534 x-2x-1
1.38028 xi-x3-1 Pisot — next smallest after

plastic number rho

1.35321 x-x-2
1.27202 x-x2-1
1.22074 xt-x-1

3/10/20141.18921 x-2
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Part XI

* Matrix treatment of phrasal patterns
— Maximal growth is iterated matrix multiplication
— Growth factor as dominant eigenvalue
— Characteristic polynomials



A notion of syntactic “growth”

As we saw on the last slide, the X-bar pattern “grows”
more nodes per line than the alternative (HH D-bar) as
it is expanded.

I've explored elsewhere some reasons to think that
faster growth in this sense is a desirable property (all
else equal); | won’t review that here.

For present purposes, let’s just assume that growth in
this sense is something worth investigating.

How can we quantify this notion of growth, and what

are the growth properties of the conceivable discrete
infinite recurrence patterns?



Growth factor

* |Intuitively, we want to find a “growth factor” G
for each pattern.

 This number describes how the number of
nodes on one line of the tree relates to the
number of nodes on the previous line.

 We take G to be (basically) the limit of the
ratio of the number of nodes on line n, to the
number of nodes on line n-1, as n gets large.

— Thus, nodes (n) =G * nodes (n-1)



G is the dominant eigenvalue of the
phrasal recurrence matrix.

* Here, expressing phrasal recurrence patterns as
matrices brings its first rewards.

* Matrices can be interpreted in several different
ways; a hatural and important interpretation is as

a linear mapping.

* Under this interpretation, the n x n (square)
matrices we’ll be considering (expressing how n
kinds of non-terminals link to each other),
transform a point in n-dimensional space into
another point in n-space.



Phrasal growth ~ iterated matrix
multiplication

Take A to be the relevant phrase structure matrix

Take x; to be a column vector expressing the number of
each kind of non-terminal on the ith line of the tree.

(we identify the non-terminals with the coordinate
axes: the number of non-terminals of a given type is
expressed as distance along the associated axis).

Then maximal expansion of the pattern is simply
iterated matrix multiplication.

A xi = Xi+1



Syntactic growth is iterated mapping

The syntactic problem we have been
considering (how do phrasal patterns grow?)

Now resolves as a geometric one:
Given some input vector —a point in n-space,

Where does that vector go as the mapping
iterates?

Thinking of things this way lets us see why G is
the dominant eigenvalue.



Eigenvalues and eigenvectors

An important property of a square matrix is its set of
eigenvectors and eigenvalues.

In general, the transformation of n-space induced by matrix
multiplication is quite complicated.

The eigenvectors represent points of stability amidst the
complexity of the mapping:

They are the vectors that, under the transformation, retain
their direction.

i.e., for eigenvector v = ax + by + cz...

Av = Av (= Aax + Aby + Acz...)

The scaling factor A is the eigenvalue associated with that
eigenvector.



Why G is the dominant eigenvalue

Suppose the starting vector is ax + by ...

We can rewrite it in terms of the eigenvectors (a standard
and powerful technique):

ax + by ... = cv, +dv, ..
v; an eigenvector with eigenvalue A,

Multiplication by the matrix n times has a particularly nice
expression in terms of the eigenvectors:

A "cv, + A,dv, ...
Suppose A, is the largest (i.e. dominant) eigenvalue; as n

increases, the sum of component vectors converges on
A,"cv, (for non-zero c).

Thus, x, ~ A;X,.q; A is the desired quantity G.
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Best growth: generalized X-bar

The highest growth factor in the 2 non-terminal class

belongs to X-bar: the golden mean, associated with the
Fibonacci numbers.

The largest growth factor with three non-terminals is the
“tribonacci constant”, in the generalized X-bar format in this
class (an X-bar like pattern with two specifiers per phrase).

..................................................................

3223|110

2213|101
1203 [100

Characteristic polynomial: x*-x¢2-x-1=0 ®

Growth factor: the “Tribonacci” constant, ~1.839...

90



Composite systems

* With two non- e Spie of Spines

terminals, we find our i-:))% | B ﬂ m
first examples of -

“« 2 Characteristic polynomial: x2 — 2x + 1 ¢
composite” systems: Growth factor: 1
 Patterns that have
“smaller” subpatterns (46) Spine of Pairs
: PSRs: Matrix:
(i.e., subtrees generated 55 | [1 1]
with less than the full 1200 |00
set of non-termina IS) Characteristic polynomial: x2 — x
Growth factor: 1
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Factorization of composite systems

(46) Spine of Pairs
PSRs: Matrix:

................

For example, consider the 2521 [1 l:|
Spine of Pairs (top right). 1>00 [00
This pattern is composed of

k : Characteristic polynomial: x* — x
Pairs (bottom right) Growth factor: 1

substituted within a Spine

: The Spine

(center I’Igh'F). | ke Matix  Troc
Its polynomial is the /X
product of the polynomials 1>01 [1] @
of its components: Characteristic polynomial: x — 1

X2 —X = (X — 1)*X Growth factor: 1
Its roots are those of its The Pair .
components; G is the PSR Matix  Tree
largest among these roots. 1500 [0] ./\.

Characteristic polynomial: x — 0

Growth factor: 0
3/10/2013 92



Growth in composite systems

Composite systems are composed of simpler patterns, one
substituted inside another.

(This is opposed to “prime” patterns, irreducible in terms of
simpler patterns)

How does the growth of the larger pattern relate to the
growth of its component sub-patterns?

Here again, the matrix formulation provides the answer:

The growth factor of the larger pattern is just the largest
of the growth factors among its components.

This is so, because the characteristic polynomial of a
composite system is the product of the polynomials of its
component systems.

When multiplying polynomials, roots are preserved.



Even more abstract

A further abstraction will help in understanding this (and
other) pattern(s).

Namely, we can represent the recurrence relations by means
of a matrix:

— e

The rows and columns are associated with the distinct kinds
of non-terminal.

The rows correspond to non-terminal inputs to the PSRs; the
columns represent non-terminals in the output of each PSR.



An alternative

* Let’s compare the X-bar pattern with a
superficially very similar pattern,

* Which also constructs each phrase from a
terminal and two further phrases.
— X-bar: Phrase = [Phrase [terminal Phrase]]
— HH D-bar: Phrase = [terminal [Phrase Phrase]]

XP > X0 X’ re
X" > XP XP /}A 20




Same ingredients, different recipe: different result.

* Consider what happens as we “inflate” these patterns,
expanding them maximally:

2) 9 generations of X-bar (Phrase > [Phrase [terminal Phrase]] )
<O

3) 9 generations of HH D-Bar (Phrase > [terminal [Phrase Phrase]] )

3/10/2013
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Back to comparing X-bar and HH D-bar

* This insight lets us capture the difference in
growth between X-bar, and the HH D-bar
alternative, very simply and directly.

X-bar: HH D-bar:
|:1 1| K>\A 01
10 o 20
G: @~ 1.618 V2 ~1.414

(the golden mean)



An example

* Growth of the X-bar pattern in these terms:

e Attheroot, there is a single XP-type non-terminal; thus
the initial vector x, is [1] .
0

w0 < [0] <[]

* Thatis, the next line (x,) contains one XP-type non-
terminal, and one X'-type.

* Continuing, we get the following sequence of vectors,
representing the number of non-terminals on
successive lines of the tree:

LoJ LB ] ] Ll i



X-bar growth illustrated with vectors

R of X's Ri of X's Ri of X's

1+ # Of XPs /': : +# of XPs /:': +# of XPs

FHofX's

/} # of XPs

—# of XPs

XP X

AP 1 0

BP A’ 1 1

- -

EP C BY FP GP D’ 3 2
/N /\ /\ LN LN

KP G DLP 5 3

e e, ... Fib(n) Fib(n-1)
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X-bar (dominant) eigenvector

Ax = Ax [1;] |:1.618..]= 2.618.] - 1.618.. [1.618.]
10] |1 1.618.. 1
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One more bit of math

Associated with each square matrix is a
characteristic polynomial.

Among other important properties, the
characteristic polynomial has as its roots
(solutions when it’s set equal to 0) the
eigenvalues of the matrix.

The X-bar pattern has characteristic
polynomial x2 —x —1; for HH D-bar, it’s x% — 2.



Characteristic polynomials and linear recurrence relations.

* The X-bar phrasal form generates the Fibonacci numbers 1,1,2,3,5,8,13...

* In numbers of each type of non-terminal, on successive lines of the tree.

* For example,

there is 1 XP at the root,

1 XP on the next line (its Spec),

2 XPs on the line after that (Comp, and Spec of Spec),

3 on the next line (Spec of Spec of Spec, comp of Spec, spec of Comp)

5 on the next (Spec of Spec of Spec of Spec, Comp of Spec of Spec,
comp of comp, spec of comp of spec, etc.

* Fib numbers obey the linear recurrence a,=a,,;+a.,.

* Characteristic polynomial of the X-bar matrix is x?-x-1.

» Setting equal to zero and manipulating a bit, thisis  x" = x"1 + x"2,

* The characteristic polynomial encodes the linear recurrence governing the
count of categories on successive lines, with indices in the additive
recurrence corresponding to powers in the polynomial.

*/10/3his is quite general, holding as well for other patterns.



Part X

* Spectral classes

— Classifying phrasal matrices in terms of their set of
eigenvalues

— Endocentric
— Pisot
— Polygonal



Special members of the infinite zoo

* As we can see, as more non-terminals are
allowed, ever more patterns become available.

* |s there anything of interest to be said, beyond
mere “stamp-collecting”?

* Two special classes:

— Endocentric (generalized X-bar systems).
* Have highest growth factor for given # of non-terminals.
* Characteristic polynomial x" = x"! - ... —xt —x°.

* Head, complement, and some number of specifiers;
complement and specifiers isomorphic to the root.

— Polygonal systems (see next slide)



G=l.5214%

] XP=[X[WP[ZP YP]]]

, PRIME
1 P(G) irreducible

SELF SIMILAR DISCRETE INFINITE
Spine of Spines G=12
XP2YP X’;
X2XY’

Figure 1. Intersection of spectral classes of phrasal recurrence patterns.

Examples of patterns in each of the classes are indicated. The X-bar schema, whose

dominant eigenvalue G is the so-called Golden Number T, is the only pattern lying in all
3/10/2013 three of the special classes described here (it is Endocentric, with maximal G for its

degree; of Pisot type, with unique structural purity, and Polygonal, with real growth).
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Let us call the degree of a phrasal pattern the degree of its characteristic
polynomial. Let G represent the dominant (Perron-Frobenius) eigenvalue (i.e., the
largest, necessarily real, root of the characteristic polynomial), and G’ stand for an
arbitrary Galois conjugate (a distinct eigenvalue; equivalently, a distinct root of the
characteristic polynomial). Among the “Prime” systems (those whose matrix forms
have irreducible characteristic polynomials), the three classes of interest are as
follows:

The Endocentric class. These forms can be described as generalized X-bar
schemata; intuitively, each combines a head at the deepest level with a
complement phrase, and then combines the result with some number of specifier
phrases one at a time, to make a full phrase. These forms have the largest G for
systems of their degree; there is one such system of each degree (up to
permutation of which non-terminal is chosen as the root). As discussed in
Medeiros (2008, 2012), such patterns are likely to be of significance, in light of the
thesis of “economy of command” developed in those works. Relative to other
patterns of their degree, these structural formats support the minimum number of
c-command relations.



The Pisot class. These patterns have a G that is a so-called
Pisot-Vijayaraghavan number, an algebraic integer (i.e.
solution to a polynomial with integer coefficients) that is
strictly greater than 1, and whose Galois conjugates (here, the
various G’) are all of magnitude strictly less than 1. Although
discovered only in the 20t century, these numbers have been
the focus of considerable interest in domains like number
theory, harmonic analysis, and crystallography (see for
example the works collected in Moody 1997). In syntactic
terms, these patterns are likely to be significant because they
have a kind of structural purity; all eigenvectors (interpreted
as a particular structural ‘theme’, a stable ratio among non-
terminals) save the dominant one vanish as the pattern is
grown. All non-Pisot systems, in turn, have infinite growing
‘warts’ of structure distinct from the dominant theme.



The Polygonal class. Finally, there is a class of patterns whose G is of
the form 2cos(wt/n). These forms are polygonal: their G is the ratio
of the shortest internal diagonal to a side in a regular polygon. They,
and only they, have all G’ that are real numbers, and all and only
their matrices are diagonalizable (i.e., similar to a diagonal matrix,
with all entries off the main diagonal 0). Diagonalizable matrices
are significant in a number of applications, in part because they are
particularly “well-behaved”; the non-diagonalizable matrices
corresponding to all non-polygonal matrices are called defective.
The odd polygonal systems (whose G relates to the geometry of a
polygon with an odd number of sides) furthermore have symmetric
matrices (i.e., where arbitrary element a; = a;). These are a special
subcase of Hermitian matrices (equal to %helr conjugate transpose);
the matrix operators that represent physical observables in
guantum theory are always Hermitian. In terms of the
interpretation of eigenvectors as stable syntactic configurations, in
polygonal systems the growth of the pattern reflects real scaling of
each of its components, thus an inhomogeneous dilation. On the
other hand, all non-polygonal systems have eigenvectors (stable
configurations) associated with some complex G’ whose growth
involves a kind of rotation.



Polygonal phrasal patterns

 There is a very special class of ‘polygonal’ prime patterns, whose G is of
the form 2cos(mt/n).

* This number expresses the ratio of the shortest internal diagonal to a side,
in a regular n-gon.

To see why, note that the exterior angle 6, is 2mt/n, because the exterior angles for the
whole n-gon sum to a complete circle. Then the interior angle is & - 25t/n (the exterior
and interior angles together form a straight angle). Half of that angle (7/2 - t/n) forms
the complement of angle 6,. Thus 6; + /2 - /n = n/2, and so 6, = /n.

The cosine of angle 6; = cos(7t/n) then expresses the ratio of half a diagonal (d/2)

to a side (s; see the triangle at right above); we double this to get the diagonal-to-side
ratio stated above, 2*cos(nt/n).
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Some polygonal phrasal forms

1.8019..

Diagonal/side V2
=2cos(mt/n)

eigenvalue

of matrix:

SN I 2

02

1
1

O

020
101

010

Above: Phrasal patterns with these values as growth factor
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Polygonal phrasal

 The diagram at right gives
several representations of

patterns

these patterns.

— The growth factor G

3/10/2013

Relevant polygon
Matrix expressing

syntactic recurrence
among non-terminals

Tree diagram

Number: diagonal/side

ratio in n-gon:
A\

phrasal syntactic pattern

2cos(n/3) : t\\
= l \

Triangle
2cos(n/4) N
=v?2 .
1.4142... Square
2cos(n/S)
® = (1+V5/2)
1.6180... PETTEEON
2cos(n/6)
=v3
1.7320... Hexagon
2cos(n/7) @
1.8019...

Heptagon
2cos(n/8)
1.8478...

Octagon
2cos(n/9)
1.8794. ..

Nonagon
2cos(n/n) n-gon
€[12)

2cos(n/e)
=2

w-gon (circle)

matrix: with this growth factor:

l ./A
Spine

02 /j >:

10
D-bar

1 ‘&}A
X-bar

0zp

100

010

11
1Ofl

0T0

020]0
10110
0101

0

§43

001

110

010

0
10110
1
0

uul




Diagonalizable iff polygonal

* It turns out that alone among all the patterns we
get,

* All and only the polygonal ones have
diagonalizable matrices.

— Ones similar to a diagonal matrix,
e where all entries off the main diagonal are 0.

— Matrix A is diagonalizable iff A = PDP-1.
— If so, then A" = PD"P-1.

* Diagonalizability of matrices is considered an
important property in many applications.



Symmetric (Hermitian) iff odd
polygonal

 Moroever, the odd polygonal systems (those with
growth factor related to a regular polygon with
an odd number of sides: triangle, pentagon,
heptagon, etc.)

* Have symmetric matrices (a; = a;
— This is an even nicer property, also important in

physics.

* A symmetric matrix with real entries is a special

case of a Hermitian matrix.

— In quantum theory, physical observables always
correspond to Hermitian operators.



Symmetric and ‘almost symmetric’ matrices in

0200 0110 0110 0100
1010 2000 1001 1010
0101 1001 1000 0101
0010 0010 10200 10020]

\Eonagon N— — - — N— —
N100 Q110 0110 Q100
1010 1400 1001 1910
01% 10%Q 1 1000 0191
0010 0017 0101 001
Real symmetric (Hermitian) 3 3

3/10/2013

reorientations of polygonal systems

Octagon: (notice, “almost” symmetric: 2 corresponds to 1, but otherwise symmetric)
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Characteristic polynomials of
polygonal systems

There is a nice relationship between the
polynomials for these patterns and the so-
called Lucas and Fibonacci polynomials.

These are defined similarly to the additive
series of the same name:

Fibonacci: 1,1, 2, 3,5, 8, 13...
Lucas: 2,1,3,4,7,11, 19, 28....

Different “seeds” fed to the same recurrence
relationa,=a ,+a,,




. . — vk
Polynomial recurrence: P, =x*P_.,+P_,

* Lucas Polynomials: * Fibonacci Polynomials:
2 1

X X

X2 + 2 x2+1

X3 + 3x X3 + 2X

X* + 4x?% + 2 X*+3x2+1

x> + 5x3 + 5x X> + 4x3 + 3x

X6 + 6x% 4+ 9x2 + 2



Lucas polynomials and even
polygonals: P_ = Alt(L )

Lucas polynomials: Characteristic polynomial for
) even polygonal patterns:
X

X% + 2 X2 =2

X3 + 3X X — 3X

4 + Ax2 + 2 x*—4x%2 + 2

%5 + 5x3 + 5x x> — 5x3 + 5x

x® + 6x* + 9x? + 2 X° — 6x* + 9x* — 2



Fibonacci polynomials and odd
polygonals: P = alt(F ) —alt(F )

Fibonacci Fn  Characteristic polynomials of odd

1 polygonal phrasal patterns:

X x—1 Spine, triangle
x2 + 1 x2—x—1 X-bar, pentagon
3 + 2x X3—x2—=2x+1 heptagon
¥d+3x2+1 XA x3=3x2+2x+1 nonagon

5_y4_ 3 2 —_
x5+ 4x3 +3x X°—X'—4x>+3x?*+3x—1 undecagon



Part XI

* Economy of command in phrase structure

— Endocentric structure minimizes c-command
relations



Optimal packing... in syntax?

In phyllotaxis, the dominant Fibonacci pattern provides a
dynamically optimal packing solution, spreading new elements as
far apart as possible as the plant grows.

Medeiros (2008, 2012) develops the 1dea that the Fibonacci-related

X-bar schema is a dynamically optimal solution to a derivational
problem: Minimizing c-command relations.

C-command relations are the scaffolding for long-distance
dependencies of several kinds (binding, agreement, linearization,
scope).

Thinking of c-command as a search process, trees with fewer/shorter
c-command relations are preferred; they minimize the space
searched.

Familiar concerns of locality in syntax are extended beyond
choosing the shortest available dependency (the usual way of
thinking); instead, locality directly informs structure-building.



“Optimal packing” in phrase structure:
C-command & Dominance

{}{b,@ 1a,by,1c,dj}
a {b,{c.d}} {a,b} {c,d}
b {c,d} a b C d
C d
2=12 2=10
Strategy 1: Strategy 2:
///\

N SN O AN LN N AN SN



Divergence in total c-command relations for Spine vs Bush

3/10/2013

3) a. The Spine b. The Bush

[ M H ! 'y

w
o™
o
-

Spine

Bush

C-command/Containment totals
\\

5 1C 15 0 a5 30 35

Terminals

122



Some PS patterns to compare

a 2321 {Xbar) a.
1 =02
b. 2 b.
T
2 1
T
1] 2
a 2= 10  (‘high-headed X-bar"} 45
1= 21
b. 2
b.
T
0 1
T
2 1
3/10/2013

‘f :}} ;:' ('D-bar) a 3332 (3bar
2= 31
2 1 =30
.-"fﬂ-\-\""'\-\. b 3
1 1 .-F-"Fﬁ“"-m
J_.f‘"'nﬁ__ 3 2
2 0 __,.;-"'H-'ﬂ-\""-\-\.\_
3 1
2= 10 ("high-headed D-bar") i
1322 ] 0
2
T 1 = 10 ('spine’): 1
0 1 o
T 1 0
2 2
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Comparison of ‘best trees’

(- Command (/Containment) Relations

3/10/2013

400

350

300

250

200

150

100

50

These four curves
are the three-type
possibilities; X-bar
Is best in this set.

. -«

The Spine
— - D-Bar
csesnssan X—B‘|r

- « =HH D-Bar

—_— - HH X-Bar
- - e = 3-Bar

Max Balance

1 3 5 7

T 17T 17T 17T 17T 71T 71T 7177 I T T T T T T 1

9 111215171921 2325272931

Terminals

p4




Prediction: ‘projections’

The considerations above do not uniquely select X-bar as THE optimal
solution.

Instead, it is a member of the class of optimal solutions.
That class is interesting; the general form is isomorphic to ‘generalized X-

’

bar’.

Each phrase has a single head at the bottom, and slots for some number of
other phrases.

In other words, the optimal solution looks like an X-bar style projection
with a head, complement, and zero or more specifiers.

This is not forced by the ‘rules of the game’; | consider all ways of self-
similarly combining lexical items into larger structures.

One interpretation of this result is that it may explain why natural
language has the principle of projection -- because phrasal composition via
‘projections’ (in a purely structural sense) is optimal.

See Medeiros (2008) for more details.



Part XI|

Cephalotaxis

— Comparing phrasal organizations in terms of “head
packing”

— Number of heads grown by depth of maximal
expansion



Cephalotaxis

* The next few slides compare the ‘head growth’ of
various conceivable phrasal organizations.

* As we allow the structural molecule to be larger,
many more possibilities become available:
— The X-bar class contains 6 possibilities.

— The next larger class contains 57 possibilities (the best
performers are graphed here).

— The class beyond that has 743 possible phrasal formats; |
haven’t gone beyond enumerating them.



Squeezing from one to higher dimensions under
a global ‘radial’ gradient

* In phyllotaxis, we have a one-dimensional stream of
information -- periodicity of budding at the apical
meristem -- mapping into a higher-dimensional
distribution (the arrangements of the florets in a
seedhead, say).

e There are two ‘forces’ at work here:

* the growth itself pushing the meristem forward and
separating the old growths -- modeled by D&C with a
radial magnetic field gradient,

* And mutual repulsion among the individual
elements, tending to spread them apart near the
point of origin.



Squeezing from one to higher dimensions under
a global ‘rootward’ gradient

* |n syntax, we have another mapping between a one-
dimensional object (the surface form, a string of
words), and a higher-dimensional object (the

branching syntactic structure).

* | believe there is a global gradient here as well,
effectively ‘pulling’” elements toward the root of the
syntactic tree (“economy of command”; see
Medeiros 2008, forthcoming, amounts to a

preference for shallower trees).
* And a kind of mutual repulsion as well.



Optimal packing of constituents

* Suppose (for reasons related to reducing c-command and dominance
totals) that it is desirable to fill’ the available binary-branching space
efficiently/densely with lexical items.

* The problem is not straightforward: if we imagine the structure growing
from the root down, there are two desires which directly conflict:

(i) place lexical items as close to the root as possible,
(ii) but leave adequate room (branching space) for further growth.

* These conflict because lexical items are terminals; they ‘close off” all
further growth along their path.



Comparison of phrase structural
‘erowth’
Consider some of the options:

* |f one gets ‘greedy’ and places two lexical items right below
the root (locally maximizing the density of terminals), no A

further growth is possible.

* |If one places one terminal beneath each branching point,

then only one branch is available for further growth; a uni-
branching tree (the Spine) results. ‘/‘/

* Thisis only a good solution for very small trees.

* |f one ‘delays satisfaction” and pushes terminals even
farther down the tree, more room for growth is left.



Goldilocks growth

(9a) XP = [X" YP] (b) XP =[ZP [X° YP]] (c)XP =[WP [ZP [X° YP]|]

The Spine (9a) grows too fast, choking off room for further growth.

3-Bar (9c) grows too slowly, leaving the space sparsely populated.
X-bar (9b) is ‘just right’ (at this size scale, anyway).
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Spine, depth 1
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X-bar, depth 2
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X-bar, depth 4
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X-bar, depth 5
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X-bar, depth 6
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Global pull/local push

* The sort of organization at right
represents the flavor of the dynamic
mini-max compromise - it eventually
grows more heads than any
arrangement of the same amount of
recursive structure.

* To globally maximize heads -- to pack as
many as possible as near the root as
possible -- locally heads are as sparsely
distributed (deep down/far apart) as
possible.

* Perhaps a case of “dynamic frustration”?
(Binder, Uriagereka)



Prediction: if optimal packing matters for phrase structure, we may well
expect that which solution is chosen might change as the tree grows.

If syntax proceeds by cycles (e.g. phases), | predict something like the
following sequence of ‘growth modes’:

16)

The Spine 1 201
'7) &

That is, | predict that the ‘bottom’ of the cycle should contain only
head-complement structures [X° YP], with single-specifier X-bar
[ZP [X° YP]] strcuture above that, and multiple specifiers, if found
at all, only at the highest level of the cycle.
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Growth mode transitions

There is some evidence that this is true:

Pylkkdanen (2002), following Larson (1988): multiple v/VP
arguments are not ‘piled up’ within the lower lexical VP, but
are introduced one-at a time in individual
Appl(icative)P(hrase)s.

And the subject is ‘severed’ from the verb, e,g, Kratzer (1996)
and much subsequent work.

Thus, the single-specifier regime reaches down as low as the
ApplPs, but perhaps not into the lowest level (VP, which
allows just a complement).

That is as predicted: we have the Spine at the bottom, X-bar
organization higher up.



From one to multiple specifiers

What about the other half of the prediction, that multiple specifiers (if permitted at
all) are restricted to the ‘top’ of the cycle?

That might also be correct. The ‘phase edges’ have been held to allow multiple
specifiers:

* VP hosts the external argument, and successive-cyclically moving whPs.

* CP has been argued to allow multiple specifiers, in light of ‘multiple-wh
constructions’:

— Ko sta gdje kupuje?
Who what where bought
“Who bought what where?” (Serbo-Croatian, Stepanov 1997: 3)
Multiple specifiers are not apparent elsewhere.

— One exception (thx Yosuke Sato): Japanese ‘multiple subject’ constructions,
analyzed as multiple specifiers of TP; the problem is that TP is ‘too early’ for
multiple specifiers. Leaving the details aside, this observation falls into place if

Japanese clauses have more structure due to massive leftward movement, as
proposed by Kayne (1994).



Heads at Depth

— Spine

— HH X-Bar
X-Bar

—HH D-Bar

— D-bar

— Pair of Spines

Total Heads

— Spine of Spines

— Double-headed X-
Bar

— 3-Bar

i 2 3 4 5 6 7 8 9  Powerof3
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Heads at Depth: 3 types

m ——HH X-Bar

g — X-Bar

(7] -

T HH D-Bar

4_9 ——D-bar

|2 — Pair of Spines

———Spine of Spines
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Heads at depth: best 4-types systems to
11

300

250

200

150

Total Heads

100

50

0
Depth
—— Power of 3 — #5 #6
——3-bar ——DH X-bar —— #24
—— #26 —— #27/29 —— #39
X X
3/10/201 #40 SoXbar/XbaroS So0SoS -
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Total heads

Heads at depth: best 4-type systems to

2500

2000

1500

1000

500

— Power of 3
DH X-bar
— #26
— #39
——Spine of X-bars

15

7 8 9 10 11 12 13 14 15
Depth

——3-bar
— #24
— #29
—#40
Spine of Spines of Spines
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4 types

One point to be made about the 4-type systems is that
the competition is quite ‘messy’:

The eventual winner (3-bar) doesn’t rise above the rest
of the field until depth 20.

For smaller structures, different organizations are optimal
for small stretches of the intermediate range.

Intuitive observation: it looks like those intermediate-best
organizations (except the Spine of Spines of Spines) are
formed by ‘mixing’ X-bar and 3-bar, or doubling/iterating
some sub-portion of the X-bar pattern...
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These are the 4-
type systems
graphed on the
previous slides.

Intuitively, all but
(K) look to be
minimal variations
on the X-bar
shape, derived by
stretching/splitting
or doubling some
node. Thus (14)
replaces the X0
node with a pair of
such; (29) doubles
the X-bar level,
etc.
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